Sensors and Materials, Vol. 24, No. 1 (2012) 43–56 MYU Tokyo

S & M 0868

NO₂ and CO₂ Sensing Properties of LISICON-Based Sensor Operative at Room Temperature

Kenji Obata*,1, Shunya Motohi1 and Shigenori Matsushima1,2

¹Department of Materials Science and Chemical Engineering,

Kitakyushu National College of Technology (KCT),

5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985, Japan

²Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (KIT), Kitakyushu Science and Research Park, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan

(Received April 1, 2011; accepted September 26, 2011)

Key words: NO₂ sensor, CO₂ sensor, LISICON, NASICON, indium tin oxide (ITO)

Four types of sensor were fabricated by combining solid-state electrolyte (LISICON or NASICON) disks with sensing electrode materials, such as Au, indium tin oxide (ITO), and auxiliary phase (nitrate or carbonate). Their NO_2 and CO_2 sensing properties were examined under 30% relative humidity (RH) in the temperature range of 30 to 100°C. When the NO₂ sensor was operated in the range of 2 to 7 ppm NO₂ at 30°C, the LISICON sensor attached with ITO-NaNO₂ had the highest sensitivity to NO₂ and the electromotive force (EMF) change was 41.4 mV. At 30°C under 30% RH, the EMF values of the LISICON sensor attached with ITO-NaNO₂ were proportional to the logarithm of NO₂ concentration. Also, when the CO_2 sensor was operated in the range of 250 to 2,500 ppm CO₂ at 30°C, the LISICON sensor attached with ITO-Li₂CO₃-BaCO₃ had the highest sensitivity to CO2 and the EMF change was 20.0 mV. At 30°C under 30% RH, the EMF values of the LISICON sensor attached with ITO-Li₂CO₃-BaCO₃ were correlated linearly with the logarithm of CO_2 concentration. Subsequently, to examine gas selectivity, the NO₂ selectivity of the sensor attached with ITO-NaNO₂ and the CO₂ selectivity of the sensor attached with ITO-Li₂CO₃-BaCO₃ were evaluated at 30°C under 30% RH. As a result, it was found that the LISICON and NASICON sensors attached with ITO-NaNO₂ were fluctuated by the change in CO_2 concentration. On the other hand, although the NASICON sensor attached with ITO-Li₂₂CO₃-BaCO₃ was affected by the NO₂ concentration change, the LISICON sensor attached with ITO-Li₂CO₃-BaCO₃ showed a high CO₂ selectivity. From thermodynamic calculations, it was considered that the chemical instability of NASICON and NaNO₂ under CO₂ led to the degradation of NO₂ gas selectivity in the ITO-NaNO₂-attached sensor, whereas that of NASICON under NO₂ caused the degradation of CO₂ gas selectivity in the ITO-Li₂CO₃-BaCO₃-attached sensor.

^{*}Corresponding author: e-mail: obata@kct.ac.jp

1. Introduction

Potentiometric solid-state electrolyte sensors have been reported for the detection of $NO_x^{(1-4)}$ and $CO_2^{(5-10)}$ This type of sensor possesses a high selectivity despite its relatively simple structure.⁽¹¹⁻¹³⁾ This is because it detects an objective gas from the electrochemical reaction. However, these potentiometric sensors must be used at a temperature above 150°C to advance the electrochemical reaction smoothly. This denotes that the potentiometric sensor contains a weak point that should be improved in terms of electric power consumption. Also, the sensors combined with a heating element are difficult to downsize. If the target gas sensing at room temperature becomes possible, the heater can be eliminated from the sensor system, so that the sensor can be manufactured as much smaller and simpler, and operated easily with an electric cell.

For the past 10 years, it has been reported that solid-state electrolyte sensors attached with a metal oxide and an auxiliary phase exhibit a gas sensing capability even at room temperature.^(14–20) In general, this type of sensor was fabricated using NASICON (Na⁺ super ionic conductor) that has a high ionic conductivity at room temperature as a solid-state electrolyte. However, in the case of the NASICON-based sensor, it was pointed out that the Na₂O, which is an oxide with a mobile ion species, is unstable under humid condition and easily reacts with NO₂ and CO₂ in ambient atmosphere.^(16,19,20) Also, after being kept in a humid atmosphere at low temperature, Na₃PO₄ eluted from the bulk of the NASICON disk to the surface was related to the degradation of CO₂ sensing properties.⁽²¹⁾ The sensor with NASICON is not suitable for the CO₂ or NO₂ detection due to its chemical instability in the atmosphere. Imanaka *et al.* reported that the gas sensing of the CO₂ gas sensor using LISICON (Li⁺ super ionic conductor) was minimally affected by NO₂.⁽²²⁾ We considered that the LISICON-based sensor operative at room temperature was also effective for improving the influence of coexisting gas.

In this study, the LISICON-based sensor operative at room temperature was fabricated by combining with ITO and auxiliary phase, such as $NaNO_2$ or Li_2CO_3 -BaCO_3, and its NO_2 and CO_2 sensing performances were studied in detail in the temperature range of 30 to 100°C under 30% RH. The NASICON-based sensor was also fabricated and its gas sensing properties were compared with those of the LISICON-based sensor.

2. Theory

The solid-state electrolyte sensor attached with a metal oxide and an auxiliary phase detects a target gas concentration from the change in the electrochemical equilibrium state between the gas and an auxiliary phase. For example, an electrochemical cell of the NASICON ($Na_3Zr_2Si_2PO_{12}$) sensor combined with ITO and an auxiliary phase, such as a carbonate and a nitrate, is expressed as follows.^(17,20)

In this type of sensor, the physisorbed water on the surface of the metal oxide such as ITO behaves just like a solvent, and a target gas $(NO_2 \text{ or } CO_2)$ existing in the atmosphere

is transformed to a chemical ion species $(NO_2^- \text{ or } CO_3^{2^-})$ involved in the electrode reaction, as written in eq. (2) or (2'), respectively. Furthermore, the electrochemical reaction between a chemical ion species $(NO_2^- \text{ or } CO_3^{2^-})$ and an auxiliary phase $(NaNO_2 \text{ or } Li_2CO_3)$ in an equilibrium state may be given by eq. (3) or (3'), respectively.

$$NO_2 + e^- = NO_2^-$$
 (2)

$$CO_2 + 1/2O_2 + 2e^- = CO_3^{2-}$$
 (2')

$$Na^{+} + NO_{2}^{-} = NaNO_{2}$$
(3)

$$2Li^{+} + CO_{3}^{2-} = Li_{2}CO_{3}$$
(3')

The total NO_2 and CO_2 sensing reaction is respectively given by

$$Na^{+} + NO_2 + e^{-} = NaNO_2, \qquad (4)$$

$$2Li^{+} + CO_{2} + 1/2O_{2} + 2e^{-} = Li_{2}NCO_{3}^{2-}.$$
 (4')

On the other hand, the reference electrode reaction on the Au electrode can be given by

$$2Na^{+} + 1/2O_2 + 2e^{-} = Na_2O$$
 (in NASICON). (5)

By using the Nernstian equation, the electrode potentials in reactions (4), (4'), and (5) are expressed as eqs. (6), (6'), and (7) in turn,

$$E_1 = C_1 \text{ (constant)} + (\mathbf{R}T / n_1 \mathbf{F}) \cdot \ln ((a_{\text{Na}+}) \cdot P_{\text{NO2}} / a_{\text{NaNO2}}), \tag{6}$$

$$E_2 = C_2 \text{ (constant)} + (RT / n_2 F) \cdot \ln ((a_{\text{Li}+})^2 \cdot P_{\text{CO2}} \cdot (P_{\text{O2}})^{1/2} / a_{\text{Li2CO3}}), \tag{6'}$$

$$E_3 = C_3 \text{ (constant)} + (RT / n_3 F) \cdot \ln ((a_{\text{Na+}})^2 \cdot (P_{\text{O2}})^{1/2} / a_{\text{Na2O}}),$$
(7)

where n_1 , n_2 , and n_3 are respectively the number of electrons associated with the electrode reaction for NO₂, CO₂, and O₂, *P* the partial pressure, R the gas constant, *T* the absolute temperature, F the Faraday constant, C the constant of standard electrode potential estimated from Gibbs free energy, and *a* the activity of chemical species such as Na⁺, NaNO₂, Li⁺, Li₂CO₃, and Na₂O (in NASICON). The observed electromotive force (EMF) is given as a potential difference between the sensing and reference electrodes. If P_{O2} and activity of chemical species (a_{NaNO2} , a_{Li2NO3} , a_{Na2O} , a_{Na^+} , and a_{Li^+}) would be assumed to remain unchanged throughout the measurement, the observed EMF (E_{NO2} and E_{CO2}) can be given by the next eqs. (8) and (8').

$$E_{\text{NO2}} = C_4 \text{ (constant)} + (RT/F) \cdot \ln(P_{\text{NO2}} \cdot a_{\text{Na2O}} / a_{\text{Na+}} \cdot a_{\text{NaNO2}})$$
(8)

$$E_{\rm CO2} = C_5 \,(\text{constant}) + (RT/2F) \cdot \ln \left((a_{\rm Li+})^2 \cdot P_{\rm CO2} \cdot a_{\rm Na2O} / ((a_{\rm Na+})^2 \cdot a_{\rm Li2CO3}) \right)$$
(8')

When a target gas concentration is varied from *P*' to *P*'', the theoretical EMF change $(\Delta EMF_{NO2} \text{ and } \Delta EMF_{CO2})$ is written in eqs. (9) and (9'), respectively. As written in reactions (4) and (4'), n_1 and n_2 are equal to 1 and 2, respectively.

$$\Delta EMF_{\rm NO2} = (RT/F) \cdot \ln (P''_{\rm NO2}/P'_{\rm NO2})$$
⁽⁹⁾

$$\Delta EMF_{\rm CO2} = (RT/2F) \cdot \ln(P''_{\rm CO2}/P'_{\rm CO2})$$
(9')

By applying eqs. (9) and (9') at 30°C, the ΔEMF_{NO2} value is estimated to be about 32.9 mV in the range of 2–7 ppm, whereas the ΔEMF_{CO2} value is about 30.1 mV in the range of 250–2,500 ppm.

3. Methods

3.1 Materials preparation

LISICON (LiTi₂(PO₄)₃) was prepared from Li₂CO₃, TiO₂, and (NH₄)₂HPO₄.⁽⁸⁾ These powders were mixed and ground in a ball mill for 24 h by a wet process. The mixture was reacted in a gold crucible at 800°C for 2 h. The precursor powder obtained was mechanically reground with an agate mortar into a fine powder. The precursor was compacted into a disk (10 mm diameter and 1 mm thick), followed by sintering at 900 °C in air for 2 h. NASICON (Na₃Zr₂Si₂PO₁₂) was prepared by a sol-gel technique using Si(OC₂H₅)₄, Zr(OC₄H₉)₄, PO(OC₄H₉)₃, and NaOC₂H₅.⁽²³⁾ These alkoxides were stoichiometrically dissolved in an ethanol solvent containing HNO₃ and allowed to stand for about 20 h under stirring. This operation was carried out in a dry N₂ atmosphere and the ethanol solvent was kept at 60°C. Then, the distilled water was added to the ethanol solution for the hydrolysis. The resulting precipitates were dried at 120°C in air for 24 h. After being calcined at 750°C in air for 1 h, the precursor powder was compacted into a disk (10 mm diameter and 1 mm thick). The disk was sintered at 1,200°C in air for 5 h and polished with sand paper.

3.2 Fabrication of sensor

Four types of sensor were fabricated by combining solid-state electrolyte (LISICON or NASICON) disks with sensing electrode materials, such as Au, ITO, and auxiliary phase (NaNO₂ or Li₂CO₃-BaCO₃), as schematically drawn in Fig. 1. The binary carbonate Li₂CO₃-BaCO₃ (1:2 in molar ratio) was used.⁽²⁰⁾ To prepare it, the mixture of Li₂CO₃ and BaCO₃ was calcined in air at 750°C for 10 min and the resulting partially molten system was cooled and pulverized in an agate mortar. ITO (10% Sn-doped In₂O₃) was chosen as a metal oxide because the CO₂ sensor using ITO as a sensing material showed excellent sensing capabilities even at room temperature.⁽¹⁶⁾ Ten atomic percent Sn-doped In₂O₃ powders were conventionally prepared from an aqueous mixed solution of InCl₃ and SnCl₄. Then, the powders were calcined at 1000°C in air for 5 h.

To fabricate a Au-attached sensor, both the reference and sensing electrodes were constructed by using a gold paste, followed by calcining at 800°C in air for 2 h. For the ITO-attached sensor, it was fabricated by using an ITO paste, followed by a calcining

<RE: reference electrode>

Fig. 1. Schematic of solid-state electrolyte-based sensor.

at 500°C in air for 30 min. The attachment of the ITO-NaNO₂ or ITO-Li₂CO₃-BaCO₃ sensing electrode was carried out by calcining the whole assembly at 320°C for 5 min and 500°C for 30 min, respectively. On the other hand, the reference electrode (Au) of all the sensors was prepared in the same manner and was covered with an inorganic adhesive (Toagousei Co. Ltd., Aron Ceramic C) as a protective layer to isolate from water vapor, NO₂, and CO₂ in the atmosphere. The fabricated sensor was fixed on the end of a quartz glass tube (9 mm in diameter) with an inorganic adhesive, as shown in Fig. 1.

3.3 Measurement of gas sensing properties

The gas sensing properties of the sensor were measured in a conventional gas-flow apparatus equipped with a heating facility in the temperature range of 30 to 100°C. Sample gases consisting of air, NO₂, CO₂, and H₂O were prepared by diluting a parent gas (10 ppm NO₂ and 5,000 ppm CO₂ in dry synthetic air) with dry synthetic air and/or wet air. The wet air was prepared by allowing the dry air to bubble through water in a flask. The concentrations of NO₂ and CO₂ were varied in the range of 2 to 7 ppm NO₂ and 250 to 2,500 ppm CO₂. The sample gases were allowed to flow over the sensing electrode at a rate of 0.1 dm³/min. The EMF of the sensor was measured with a digital electrometer. In this study, the base EMF was defined by measuring EMF to the gas containing 2 ppm NO₂ or 250 ppm CO₂ under 30% RH.

4. Results and Discussion

4.1 NO₂ sensing electrode

Three types of LISICON-based NO_2 sensor using Au, ITO, or ITO-NaNO₂ were tested for the NO₂ sensing capabilities. Figure 2 shows the relationship between the NO₂

Fig. 2. EMF changes relative to the change in NO_2 concentration under 30% RH between 30 and 100°C: (a) theoretical value, (b) Au-attached, (c) ITO-attached, and (d) ITO-NaNO₂-attached LISICON sensors.

sensitivity (ΔEMF) of the LISICON-based sensor and the measurement temperature. The examination was carried out in the range of 2 to 7 ppm NO₂ under 30% RH between 30 and 100°C for Au-attached, ITO-attached, and ITO-NaNO₂-attached LISICON sensors. Here, ΔEMF_{NO2} stands for the increase in EMF with increasing NO₂ concentration from 2 to 7 ppm. By applying eq. (9), the theoretical ΔEMF values were calculated to be 32.9, 36.1, and 40.5 mV at 30, 60, and 100°C, respectively. Among the three types of LISICON-based sensors examined, the ITO-NaNO₂-attached sensor had the highest sensitivity to NO₂ at 30°C. However, the NO₂ sensitivity decreased with increasing temperature as shown in Fig. 2. We previously reported that the physisorbed water on the surface of ITO behaves just like a solvent and promotes the gas sensing reaction at room temperature.^(18,20) Thus, it is conceivable that the decrease in ΔEMF originates from the desorption of physisorbed water in the vicinity of the sensing electrode with increasing temperature.

Figures 3(a) and 3(b) show the EMF response curve to stepwise changing NO₂ concentration and the relationship between the EMF value and NO₂ concentration for the ITO-NaNO₂-attached LISICON sensor. The measurement temperatures were 30, 60, and 100°C, and the relative humidity was 30%. When the NO₂ concentration was changed from 2 to 3 ppm in a measurement chamber, the EMF change was 22.4 mV. The EMF change became large as the NO₂ concentration was increased from 2 to 7 ppm and finally reached 41.4 mV. Each 90% response time to stepwise changing NO₂ concentration was estimated to be about 5 min. At each measurement temperature, the EMF value was proportional to the logarithm of NO₂ concentration. By using Nernstian eq. (9), the slope of the ITO-NaNO₂-attached LISICON sensor was evaluated to be n = 0.79 at 30°C. Theoretically, the *n* value should be equal to 1, if the electrochemical reaction in eq. (4) is supposed to take place over the sensing electrode. However, the ne value of the measurement at 30°C is far from the theoretical value. It is possible that this is because nitrate easily dissolves in water.

Fig. 3. NO_2 sensing properties under 30% RH at 30°C for the ITO-NaNO₂-attached LISICON sensor: (a) EMF response transients to stepwise changing NO₂ concentration and (b) relationship between EMF values and NO₂ concentration at various temperatures.

4.2 CO_2 sensing electrode

Subsequently, three types of LISICON-based CO₂ sensor using Au, ITO, or ITO-Li₂CO₃-BaCO₃ were examined in terms of CO₂ sensing capabilities. Figure 4 shows the CO₂ sensitivity (ΔEMF_{CO2}) of the LISICON sensor as a function of measurement temperature. The measurement was carried out in the range of 250 to 2,500 ppm CO₂ under 30% RH between 30 and 100°C for the Au-attached, ITO-attached, and ITO-Li₂CO₃-BaCO₃-attached LISICON sensors. Here, ΔEMF_{CO2} stands for the increases in EMF with increasing CO₂ concentration from 250 to 2,500 ppm. By applying eq. (9'), the theoretical ΔEMF values were estimated to be 30.1, 33.0, and 37.0 mV at 30, 60, and 100°C, respectively. The ITO-Li₂CO₃-BaCO₃-attached LISICON sensor shows the highest sensitivity to CO₂ among the three types of LISICON-based sensor. However, the CO₂ sensitivity of the sensor also became low with increasing operating temperature as observed in Fig. 2.

Figures 5(a) and 5(b) show the EMF response curve to stepwise changing CO₂ concentration and the relationship between the EMF value and CO₂ concentration for the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor. The measurement was carried out in the same manner. When the CO₂ concentration was changed from 250 to 500 ppm in a measurement chamber, the EMF change was 4.0 mV. The EMF change became large as the CO₂ concentration was increased from 250 to 2,500 ppm and finally reached 20.0 mV. Each 90% response time to stepwise changing CO₂ concentration was estimated to be about 5 min. At each measurement temperature, the EMF value was correlated linearly with the logarithm of CO₂ concentration. According to the Nernstian equation, the slope of the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor indicated n = 3.01. The theoretical n value should be equal to 2, if the electrochemical reaction in eq. (4') is supposed to promote the sensing reaction. It is possible that the mobile ion is insufficient

Fig. 4. EMF changes relative to the change in CO_2 concentration under 30% RH between 30 and 100°C: (a) theoretical value, (b) Au-attached, (c) ITO-attached, and (d) ITO-Li₂CO₃-BaCO₃-attached LISICON sensors.

Fig. 5. CO_2 sensing properties under 30% RH at 30°C for the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor: (a) EMF response transients to stepwise changing CO₂ concentration and (b) relationship between EMF values and CO₂ concentration at various temperatures.

to attain the electrochemical chain, since the Li⁺ ion was not exchanged at the interface between LISICON and the auxiliary phase.

4.3 Gas selectivity

To examine gas selectivity, the CO_2 sensitivity of the ITO-NaNO₂-attached sensor and NO₂ sensitivity of the ITO-Li₂CO₃-BaCO₃-attached sensor were evaluated at 30°C under 30% RH. The gas selectivity of the LISICON sensor was evaluated by comparing with the result of the NASICON sensor. Figures 6(a) and 6(b) show the EMF value as a function of NO₂ or CO₂ concentration at 30°C under 30% RH for ITO-NaNO₂-attached sensors. As shown in Fig. 6(a), both the LISICON-based and NASICON-based sensors had a Nernst-type response to the change in NO₂ concentration. The EMF values of both sensors were proportional to the logarithm of CO₂ concentration as seen in Fig. 6(b). From the result in Fig. 6, the EMF values of the ITO-NaNO₂-attached NASICON to below 2,500 ppm CO₂ became negative as compared with those of that to above 2 ppm NO₂. This means that this type of sensor was not responsive to CO₂ gas. In contrast, the EMF values of the ITO-NaNO₂-attached LISICON to below 2,500 ppm CO₂ became positive in comparison with those of that to above 2 ppm NO₂. This result indicates that this sensor was not affected by the change in NO₂ concentration. Table 1 compares ΔEMF (ΔEMF_{NO2} and ΔEMF_{CO2}) of ITO-NaNO₂-attached sensors to the increase in NO₂ or CO₂ concentration. As shown in Table 1, although ITO-NaNO₂-attached sensors have high NO₂ sensitivities, the sensors were slightly fluctuated by the CO₂ concentration change.

Figures 7(a) and 7(b) show the EMF value as a function of CO_2 or NO_2 concentration at 30°C under 30% RH for ITO-Li₂CO₃-BaCO₃-attached sensors. As shown in Fig. 7(a),

Fig. 6. EMF values of the ITO-NaNO₂-attached LISICON and NASICON sensors relative to the change in gas concentration under 30% RH at 30° C: (a) NO₂ sensing properties and (b) CO₂ sensing properties.

Table	1
raute	1

NO2 and CO2 sensitivities of the ITO-NaNO2-attached sensors.

Gas	Solid-state electrolyte	$\Delta EMF/mV$	Theoretical value/mV
NO ₂	NASICON	41.5	22.0
	LISICON	41.4	32.9
CO ₂	NASICON	25.2	20.1
	LISICON	17.0	50.1

Fig. 7. EMF values of the $ITO-Li_2CO_3$ -BaCO₃-attached LISICON and NASICON sensors relative to the change in gas concentration under 30% RH at 30°C: (a) CO₂ sensing properties and (b) NO₂ sensing properties.

both the LISICON-based and NASICON-based sensors had a Nernst-type response to the change in CO₂ concentration. As shown in Fig. 7(b), EMF values of the NASICONbased sensor were correlated linearly with the logarithm of NO₂ concentration, whereas the result of the LISICON sensor was not affected by the NO₂ concentration change. Table 2 compares ΔEMF (ΔEMF_{CO2} and ΔEMF_{NO2}) of ITO-Li₂CO₃-BaCO₃-attached sensors to the increase in CO₂ or NO₂ concentration. As shown in Table 2, in the case of the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor, although the CO₂ sensitivity was lower than the theoretical ΔEMF_{CO2} , the change in NO₂ concentration did not affect the CO₂ detection. These results indicate that ITO-NaNO₂-attached sensors and ITO-Li₂CO₃-BaCO₃-attached NASICON sensors do not have gas selectivity. In consideration of the relationship between EMF values and coexisting gas in the atmosphere as shown in Fig. 7, the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor showed a CO₂ sensing capability. Therefore, it is suspected that the NASICON-based sensor has NO₂ selectivity and the LISICON-based sensor has CO₂ selectivity regardless of auxiliary phase.

As previously reported, the NaNO₂-attached NASICON sensor operated at 150°C was not affected by the change in CO₂ concentration.⁽²⁴⁾ In addition, although the Na₂CO₃-BaCO₃-attached NASICON sensor operated at 500°C was disturbed by the NO₂ change,⁽²⁵⁾ the Li₂CO₃-attached LISICON sensor operated at 650°C was not responsive to NO₂ gas.⁽⁸⁾ According to these reports, it was possible that an impurity (a Na-based salt) or a Li-based salt), which was eluted from the bulk of the NASICON disk or LISICON disk to the surface, reacted with the coexisting gas. It is assumed that the impurity eluted from the bulk of the solid-state electrolyte reacts with the coexisting gas, and the auxiliary phase, such as nitrate, nitride, and carbonate, was formed on its surface. In this case, if their equilibrium potential for the new auxiliary phase should be more negative than that of the impurity, the sensor could not show a gas sensing capability in

2		5 5	
Gas	Solid-state electrolyte	$\Delta EMF/mV$	Theoretical value/mV
NO ₂	NASICON	29.0	22.0
	LISICON	1.0	32.9
CO ₂	NASICON	27.6	20.1
	LISICON	20.0	50.1

Table 2 CO₂ and NO₂ sensitivities of the ITO-Li₂CO₂-BaCO₂-attached sensors.

the negative potential. Therefore, in this type sensor, there are various interfaces, such as ITO/solid-state electrolyte, ITO/auxiliary phase (NaNO₂, Li_2CO_3 -BaCO₃), ITO/auxiliary phase (derived from impurity), and auxiliary phase/solid-state electrolyte, and it is important that an interface is electrochemically superior at the operating temperature.

Thus, it was considered that Na_2O in NASICON or nitrite reacts with CO_2 gas, and Na_2CO_3 is spontaneously formed on the NASICON surface, as given in eqs. (10) and (11). Additionally, it was investigated in the same manner on the assumption that Na_2O in NASICON reacts with NO_2 gas, and nitrite is spontaneously formed on the NASICON surface, as given in eq. (12). Since it was difficult to obtain the thermodynamic properties of $NaNO_2$, the data of $NaNO_3$ was used in its place.⁽²⁶⁾

$$Na_2O (in NASICON) + CO_2 \rightarrow Na_2CO_3$$
 (10)

$$2NaNO_3 + CO_2 \rightarrow Na_2CO_3 + 2NO_2 + 1/2O_2$$
(11)

$$Na_{2}O (in NASICON) + 2NO_{2} + 1/2O_{2} \rightarrow 2 NaNO_{3}$$
(12)

The relationship of thermochemical properties with an objective gas (NO₂ or CO₂) and a solid-state electrolyte or an auxiliary phase was investigated. Figures 8(a), 8(b), and 8(c) show the Gibbs free energy change (ΔG) of the reaction in eqs. (10), (11), and (12) in air containing 2 ppm NO₂ and 250 ppm CO_2 at various temperatures, respectively. As seen in Fig. 8(a), ΔG becomes negative between 300 and 500 K, suggesting that Na₂O is rather unstable in the presence of CO₂, and Na₂CO₃ is easily formed at operating temperature. As seen in Fig. 8(b), ΔG is seen to become negative at about 306 K and above. From thermodynamic calculation, it is suspected that NaNO₃ was unstable in dry air containing 250 ppm CO₂ below 33°C and Na₂CO₃ tends to be formed. As shown in Fig. 8(c), ΔG becomes negative between 300 and 500 K, and this result obviously indicates that Na₂O in NASICON is fairly unstable in the presence of NO₂. Although the thermodynamic properties of Li₂O in LISICON have not been verified yet, it is suspected that the thermochemical properties of Li₂O are chemically stable in dry air containing CO₂, in comparison with those of Na₂O in NASICON. These results support the assumption of the formation of an auxiliary phase, such as Na₂CO₃ and NaNO₃, on the surface of NASICON. From thermodynamic calculations, it was considered that the chemical instabilities of NASICON and NaNO₂ in the atmosphere containing CO₂ led to the degradation of NO₂ gas selectivity in the ITO-NaNO₂-attached sensor, whereas

Fig. 8. Gibbs free energy change (ΔG) under dry air condition containing 2 ppm NO₂ and 250 ppm CO₂ at various temperatures for the reactions of (a) Na₂O (in NASICON) + CO₂ \rightarrow Na₂CO₃, (b) 2NaNO₃ + CO₂ \rightarrow Na₂CO₃ + 2NO₂ + 1/2O₂, and (c) Na₂O (in NASICON) + 2NO₂ + 1/2O₂ \rightarrow 2NaNO₃.

that of NASICON in the atmosphere containing NO_2 caused the degradation of CO_2 gas selectivity for the ITO-Li₂CO₃-BaCO₃-attached sensor.

5. Conclusions

In this study, a potentiometric sensor was fabricated by combining solid-state electrolyte (LISICON or NASICON) disks with sensing electrode materials, such as Au, ITO or an auxiliary phase (nitrate or carbonate). Their NO_2 and CO_2 sensing properties

were examined under 30% RH in the temperature range of 30 to 100°C.

- (1) When the NO₂ sensor was operated in the range of 2 to 7 ppm NO₂ at 30°C, the ITO-NaNO₂-attached LISICON sensor had the highest sensitivity to NO₂ and its EMF values were proportional to the logarithm of NO₂ concentration.
- (2) Also, when the CO₂ sensor was operated in the range of 250 to 2,500 ppm CO₂ at 30 °C, the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor had the highest sensitivity to CO₂ and the EMF values of the sensor correlated linearly with the logarithm of CO₂ concentration.
- (3) The ITO-NaNO₂-attached sensors were fluctuated by the change in CO₂ concentration. On the other hand, although the ITO-Li₂CO₃-BaCO₃-attached NASICON sensor was affected by the NO₂ concentration change, the ITO-Li₂CO₃-BaCO₃-attached LISICON sensor showed a high CO₂ selectivity.
- (4) From thermodynamic calculations, it was considered that the chemical instabilities of NASICON and NaNO₂ in the atmosphere containing CO₂ led to the degradation of NO₂ gas selectivity in the ITO-NaNO₂-attached sensor, whereas that of NASICON in the atmosphere containing NO₂ caused the degradation of CO₂ gas selectivity for the ITO-Li₂CO₃-BaCO₃-attached sensor.

References

- 1 M. Gauthier and A. Chamberland: J. Electrochem. Soc. 124 (1977) 1579.
- 2 Y. Shimizu, Y. Okamoto, S. Yao, N. Miura and N. Yamazoe: Denki Kagaku 59 (1991) 465.
- 3 H. Kurosawa, Y. Yan, N. Miura and N. Yamazoe: Solid State Ionics 79 (1995) 338.
- 4 Y. Shimizu, H. Nishi, H. Suzuki and K. Maeda: Sens. Actuators, B 65 (2000) 141.
- 5 T. Maruyama, S. Sakai and Y. Saito: Solid State Ionics 23 (1987) 107.
- 6 T. Ogata, S. Fujitsu, M. Miyama, K. Koumoto and H. Yanagida: J. Mater. Sci. Lett. 5 (1986) 285.
- 7 N. Miura, Y. Yan, S. Nonaka and N. Yamazoe: J. Mater. Chem. 5 (1995) 1391.
- 8 N. Imanaka, T. Kawasato and G. Adachi: Chem. Lett. (1991) 13.
- 9 N. Imanaka, M. Kamikawa, S. Tamura and G. Adachi: Solid State Ionics 133 (2000) 279.
- 10 Y. Shimamoto, T. Okamoto, Y. Itagaki, H. Aono and Y. Sadaoka: Sens. Actuators, B 99 (2004) 113.
- 11 G. Hötzel and W. Weppner: Solid State Ionics 18/19 (1986) 1223.
- 12 N. Yamazoe and N. Miura: Solid State Ionics **86–88** (1996) 987.
- 13 M. Holzinger, J. Maier and W. Sitte: Solid State Ionics 94 (1997) 217.
- 14 S. Bredikhin, J. Liu and W. Weppner: Appl. Phys. A 57 (1993) 37.
- 15 S. Kumazawa, N. Miura and N. Yamazoe: Abstracts of 49th ISE Meeting (1998) p. 903.
- 16 K. Obata, K. Shimanoe, N. Miura and N. Yamazoe: Sens. Actuators, B 93 (2003) 243.
- 17 K. Obata, S. Kumazawa, K. Shimanoe, N. Miura and N. Yamazoe: Sens. Actuators, B **76** (2000) 639.
- 18 K. Obata, K. Shimanoe, N. Miura and N. Yamazoe: J. Mater. Sci. 38 (2003) 4283.
- 19 K. Obata, K. Shimanoe, N. Miura and N. Yamazoe: Electrochemistry 71 (2005) 956.
- 20 K. Obata and S. Matsushima: Sens. Actuators, B 130 (2008) 269.
- 21 T. Kida, K. Shimanoe, N. Miura and N. Yamazoe: Sens. Actuators, B 75 (2001) 179.
- 22 N. Imanaka, T. Murata, T. Kawasato and G. Adachi: Sens. Actuators, B 13-14 (1993) 476.

- 23 D. D. Lee, S. D. Choi and K. W. Lee: Sens. Actuators, B 24-25 (1995) 607.
- 24 N. Miura, S. Yao, Y. Shimizu and N. Yamazoe: Solid State Ionics 70/71 (1994) 572.
- 25 T. Lang, H. D. Wiemhofer and W. Gopel: Sens. Actuators, B 34 (1996) 383.
- 26 I. Barin, O. Knacke and O. Kubaschewski: Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, New York, 1977).