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	 We grew bulk gallium nitride (GaN) single crystals on a point seed by using the Ba-
added Na flux method and evaluated their structural and optical properties.  As a result, 
we successfully grew habit-controlled single GaN crystals.  The size of the largest crystal 
in this study was 7 mm along the [0001] direction and 9 mm along the 〈11-20〉 direction 
after 200 h of growth.  The cathodoluminescence (CL) images of (10-10) GaN wafers 
sliced from the grown crystal revealed that large areas of the wafer were dislocation free.  
Full widths at half maximum (FWHMs) of the X-ray rocking curve (XRC) of GaN (10-10) 
at low-dislocation-density sectors were from 32 to 61 arcsec.  No green and yellow 
luminescence (GL and YL, respectively) peaks were detected from the room-temperature 
photoluminescence spectrum.  From these results, it is found that the Ba-added Na flux 
method of GaN crystal growth on a point seed opens the possibility of fabricating high-
quality prismatic GaN bulk single crystals.

1.	 Introduction

	 Gallium nitride (GaN) has attracted considerable attention for high-performance 
ultraviolet light-emitting diodes (LEDs),(1,2) laser diodes (LDs),(3,4) and high-power, high-
frequency devices.(5)  Recently, GaN has also been expected for sensor materials such as 
ultraviolet sensors(6,7) and high-temperature gas sensors(8,9) because of its good sensitivity, 
recovery, and high durability.  At present, sapphire and silicon are widely used as 
substrates of GaN-based devices because of their low cost and widespread availability.  
However, it is well known that the large lattice mismatch between a GaN-based epitaxial 
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layer and a substrate leads to a high density of threading dislocations in epitaxial layers 
and the increase in reverse-bias leakage currents, which causes the decrease in the 
emission efficiency of LEDs(10) and in this breakdown voltage, noise performance, and 
reliabilities of electronic devices(11) and gas sensors.(12)

	 Using high-quality free-standing GaN wafers as a substrate is an effective method of 
improving the performance of GaN-based devices.  However, the present GaN wafers 
have a problem in the sense that they are more expensive than sapphire and silicon 
wafers.  One of the valuable ways to mass produce and reduce the production cost of 
GaN wafers is to develop bulk growth with subsequent wafer slicing such as in the case 
of Si.  The hydride vapor phase epitaxy (HVPE) method,(13,14) ammonothermal method,(15–17) 
and Na flux method(18) have been widely investigated to obtain bulk GaN single crystals.  
The free-standing GaN wafers commercially available now are fabricated by the HVPE 
method, which features fast growth but results in high dislocation density (> 106 cm−2).  
Among them, the Na flux method has the significant advantage of synthesizing high-
quality GaN crystals with low dislocation density.(19)  In a previous paper, we reported 
the Na-flux GaN grown on a newly developed seed called “GaN point seed”.(20)  The 
pyramidal crystal grown on a point seed had large dislocation-free areas and indicated 
high crystallinity.  The problem of the point seed method is the shape of the grown 
crystal, which is pyramidal.  The prismatic shape is ideal for producing a number of 
wafers.  In addition, it is desirable to increase the size of the grown crystal as much as 
possible, because a number of large-diameter GaN wafers can be fabricated from grown 
crystals.
	 It is well known that small amounts of impurities in the solutions have dramatic 
effects on crystal growth.(21,22)   In the Na flux method, marked effects such as the 
suppression of the unfavorable formation of polycrystals on the crucible wall and 
changing crystal habit to prismatic could be found by the addition of a small amount of 
graphite and strontium, respectively.(18,23)  In a previous paper, it was reported that the Ba-
added Na flux method had several advantages of growing high-crystallinity (full widths 
at half maximum (FWHMs) of the X-ray rocking curve (XRC) for the {10-10} faces was 
in the range from 33 to 120 arcsec) and low-Ba-contamination (Ba concentration in the 
crystals was below the detection limit, measured by secondary ion mass spectrometry 
(SIMS)) small prismatic crystals on the crucible wall.(24)

	 In this study, we tried to obtain prismatic bulk single crystals on a GaN point seed by 
the Ba-added Na flux method.  Then, we report the structural and optical properties of 
the crystals to indicate the quality of the bulk GaN single crystal grown on the point seed 
by the Ba-added Na flux method in this paper. 

2.	 Experimental Procedure 

	 In an Ar-filled glove box, gallium, sodium metal, additives (carbon and barium), 
and a point seed were put in a ceramic crucible (17 mm in inner diameter and 50 mm in 
height), and this crucible was enclosed in a stainless tube.  The schematic illustration of 
the point seed is shown in Fig. 1.  Details are found in ref. 20.  The hole diameters of the 
mask were 1.2–1.6 mm.  The Ga:Na mol ratios were 18:82 and 27:73.  (Ga weights were 1.60 
g for Ga:Na 18:82 and 1.70 g for 27:73.)  Graphite and barium contents relative to the 
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total Ga/Na amount were fixed at 0.5 and 0.01 mol%, respectively.  Graphite grains were 
added to prevent polycrystals from growing on the crucible wall.  After taking the tube 
from the glove box, growth was conducted by the following procedure.  First, the tube 
was connected to a N2 gas line, and heated to 850°C using an electric furnace.  Then, the 
tube was maintained at 850°C and 4.0 MPa N2 gas for 48–300 h.  After the tube cooled 
naturally, the crucible was taken out from the tube.  Residual Na and Ga-Na alloy were 
removed from the crucible with ethanol and water. 
	 The growth rate was calculated from the increase in the crystal size to investigate 
the dependence of the growth rate on the growth time.  Because it was hard for us to 
check the size and weight of the growing crystal in situ, the dependence of growth time 
was investigated by evaluating the weight of the crystals grown for each predefined 
time.  After slicing the crystal parallel to the (10-10) face and performing chemical 
mechanical polishing (CMP), the dislocation densities of the crystal were investigated by 
panchromatic cathodoluminescence (CL) measurements (Horiba, Imaging CL DF-100).  
The crystallinity was evaluated from the FWHM of the XRCs of GaN (10-10) with 
incident X-ray directions perpendicular (c⊥) and parallel (c//) to the [0001] direction 
(Rigaku, Smart Lab-ES; Cu-Kα; 40 kV; 30 mA).  The optical properties of the crystal 
were evaluated on the basis of the PL spectra at room temperature.  The excitation source 
of PL measurement was provided by a 325 nm He-Cd laser (Kommon IK3201R-F).  PL 
detection was carried out using a cooled charge-coupled device (CCD, Horiba 1024×
256-OPEN-Synapse) in conjunction with a 32 cm monochromator (Horiba iHR320). 
 
3.	 Results and Discussion

3.1	 Growth of GaN bulk single crystals by Ba-added Na flux method 
	 Figure 2 shows the relationship between growth time and weight of crystal grown in a 
Ba-added Na solution.  The inset images were those of the crystals grown for 96 and 150 
h.  From Fig. 2, the crystal started to grow at 50 h after reaching the growth temperature.  
After 96 h, the growth rate was significantly increased.  The size of the crystal reached 
a 6 mm height, a 7 mm width, and a 1.8 g weight after 300 h of growth (a photograph of 
the crystal is shown in Fig. 3(a)).  After 300 h of growth, the Ga source in the solution 
was depleted and the growth rate became close to zero.

Fig. 1.	 Schematic of configuration and growth direction of GaN point seed.  A GaN template was 
masked by mounting a sapphire plate with a small hole.
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Fig. 2.	 Relationship between growth crystal and weight of grown crystal with Ba-added Na flux.  
The inset shows the single crystal grown with Ba-added Na flux for 96 (left) and 150 h (right).

Fig. 3.	 Prismatic GaN single crystal grown by Ba-added Na flux method (a) with Gal 8 mol% Na 
flux for 300 h and (b) with Ga 27 mol% for 200 h.
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	 The apparent reason why the crystal growth started about 50 h after reaching the 
growth temperature is that it takes a long time for N species supplied from the gas phase 
to the flux close to the gas-liquid interface to reach the seed surface because the seed 
GaN was in the hole of the sapphire mask placed at the bottom of the crucible.  The 
increase in the growth rate with increasing growth period was also observed in a previous 
study.(20)  In our previous paper, the increase in the growth rate was also caused by a 
decrease in the Ga ratio in the Ga-Na mixed solution.(25,26) 
	 Then, we tried to grow a larger crystal by increasing the Ga content in the flux to 
1.7 g to avoid the depletion of the Ga source.  Ga:Na was changed to 27:73 to keep the 
flux depth constant.  Figure 3(b) shows the photograph of the crystal grown with Ga 27 
mol% Na flux for 200 h.  The size of this crystal reached a 7 mm height, a 9 mm width, 
and over 1.9 g weight; this is larger than that grown for 300 h in Ga 18 mol% Na flux.  In 
this case, most of the Ga source was also consumed during crystal growth.  The growth 
rate along the [0001] direction was as high as that reported in a previous paper.(25)  In 
this work, the size of the grown crystal was larger in the case of Ga 27 mol% than in the 
case of Ga 18 mol%, which contradicts the result shown in ref. 22.  We think that the 
size of the crystals grown in this study was restricted by the amount of Ga in the crucible 
because most of the Ga source was also consumed during long-time (over 200 h) crystal 
growth.  In other words, the real growth rates under this condition could be faster than 
the estimated ones.  These results indicated that the Ba-added Na flux method opens the 
possibility of growing bulk GaN single crystals without decreasing the growth rate. 

3.2	 Evaluation of structural and optical caracteristics of GaN crystal grown 
on point seed

3.2.1	CL measurement 
	 After slicing the crystals parallel to the (10-10) face and performing CMP, we 
evaluated the dislocation densities of the crystal from CL mapping images.  The CL 
mapping image of the (10-10) face is shown in Fig. 4(a).  Three types of striations, 
parallel to (0001), {10-11}, and {10-10}, were observed in Fig. 4(a).  It was considered 
that these sectors were grown in different growth directions: [0001], 〈10-11〉, and 〈10-10〉, 
respectively (shown in Fig. 4(b)).  Although similar sectors were also confirmed from 
the CL image of the typical GaN crystal grown on a point seed,(20) the 〈10-10〉 sector was 
widely developed only in the crystal grown by the Ba-added Na flux method.  Figures 
4(c), 4(d), and 4(e) show the high-magnification images of [0001], 〈10-11〉, and 〈10-10〉 growth 
sectors, respectively.  No skeletal area was observed in the 〈10-11〉 and 〈10-10〉 sectors.  In 
these sectors, no dark spots due to dislocation were observed in 336 µm × 336 µm area 
over the large area of the crystal, corresponding to the dislocation density of less than 
103 cm−2.  From this result, it is indicated that no negative effects such as increasing 
dislocation density are induced by the addition of Ba. 
	 The striation in the [0001] growth sector showed crooked lines, which was thought 
to be caused by skeletalization.  This was consistent with the surface morphology of 
(0001) faces.  On the other hand, straight striations parallel to {10-11} and {10-10} faces 
were observed in the 〈10-11〉 and 〈10-10〉 growth sectors, respectively.  In the [0001] 
sector, the morphological instability may be due to nonuniform supersaturation over the 
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seed surface.  This is known as the Berg effect, which is produced by the preferential 
growth of the edges and corners of the crystal.  This phenomenon produces a high 
supersaturation at the edge of a finite crystal. 
	 From the CL measurement, it was found that the dislocation density in the growth 
sector without skeletal formation was very low, indicating that the GaN crystal with the 
low dislocation density could be realized by suppressing skeletal growth. 
 
3.2.2	XRC measurement 
	 Figure 5 shows the XRC profiles of GaN (10-10).  The XRC profiles for the 〈10-11〉 sector, 
as shown in Fig. 5(c), exhibited a single peak, indicating that it consisted of a single 
domain.  Furthermore, FWHMs for c⊥ and c// were as narrow as 61 and 32 arcsec, 
respectively.  The [0001] sector also showed the low FWHM (65 arcsec for c⊥ and 53 
arcsec for c//). 
	 Compared with these XRCs, FWHMs for c⊥ were larger than those for c//.  
Moreover, XRC for the X-ray incident beam perpendicular to the [0001] direction (c⊥) 
of the initial growth stage, which correlates with the twist for the [0001] direction of the 
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Fig. 4.	 (a) CL mapping image of GaN (10-10), (b)–(d) extended figures for [10-10], [10-11], and 
[0001] growth sectors, respectively.
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GaN crystal, had the shoulder, and this shoulder almost disappeared in the XRC of the 
initial growth stage.  This means that the strain between GaN and the sapphire substrate, 
which remains in the initial growth stage, is relaxed as the growth proceeded.  In the Na 
flux method, it is known that the dislocation density, which has a relationship with the 
amount of strain, decreases during the crystal growth.(19)  From these results, the XRCs 
for the latter growth sector indicated that the GaN crystal grown on the point seed had 
high crystallinity, especially in this sector. 
 
3.2.3	PL measurement 
	 Figure 6 shows the PL spectra for the 〈10-11〉 growth sector of the (10-10) GaN and 
typical (10-10) GaN samples grown by the HVPE method.  Compared with the HVPE 
(10-10) GaN sample, the higher band-edge radiation and much lower green luminescence 
(GL: around 530 nm) and yellow luminescence (YL: around 570 nm) band radiation 
were detected from the bulk (10-10) GaN.  In particular, no GL and YL band radiations, 
which slightly appeared in the room-temperature PL spectrum of a typical GaN crystal 
grown by the Na flux method,(27) were confirmed in the spectrum of GaN grown by the 
Ba-added Na flux method. 

Fig. 5.	 (a) Photograph of GaN (10-10) of the crystal grown on point seed, and XRCs at (b) initial 
and (c) growth sectors.
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	 It is known that the PL intensity of the GaN crystal grown by the LPE method is 
much stronger at around 360 nm than that of the metal organic chemical vapor deposition 
(MOCVD)-GaN because the crystal quality of GaN grown by LPE was much greater 
than that of the MOCVD-GaN.(28)  It was reported that the origins of the GL and YL 
bands for the GaN crystal were the Ga vacancy,(29) incorporation of impurities such as 
Li(30) and Ca,(24) and the combination of O incorporation and N vacancy.(31)  We expected 
that the crystal grown on a point seed had few defects such as nonradiative centers 
and impurity incorporation.  This result is consistent with the CL data for dislocation 
density, which is one of the origins of the nonradiative center.  In this work, no detailed 
investigation of the relationship between impurities and PL spectra was conducted, and 
this will be investigated in a future paper. 
 
4.	 Summary 

	 In summary, we have achieved the growth of habit-controlled single GaN crystals on 
a point seed in a Ba-added Ga-Na solution.  The maximum size of the crystal reached 
7 mm in the [0001] direction and 9 mm in the 〈11-20〉 direction after 200 h of growth.  
Panchromatic CL images showed that no dark spots were observed in large areas of the 
[10-11] and 〈10-10〉 growth sectors, indicating that there were very few dislocations in 
the crystal.  The FWHMs of GaN (10-10) XRC for the X-ray incident directions of c⊥ 
and c// were 61 and 32 arcsec, respectively, showing high crystallinity.  High band-edge 
radiation and much lower GL and YL band radiations were detected from the (10-10) 
GaN.  This data indicated that this crystal had very few defects and impurities. 

Fig. 6.	 PL spectra for (10-10) faces of bulk GaN grown on point seed and typical HVPE-GaN 
sample.
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