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 In this paper, we present a point spread function (PSF) filtering technique for 
solving the radially variant blur restoration problem.  Radially variant blur is generated 
by a spherical single-element lens imaging system (SSLIS) that is embedded in an 
experimental camera module.  The restoration of this category of blur is carried out in a 
polar coordinate system using polar PSFs at different fields of view (FOVs).  However, 
restoration using large PSFs tends to introduce severe ringing artifacts in the restored 
image owing to the nonsparse nature of these PSFs.  We show in this paper that the PSF 
filtering technique can effectively minimize ringing artifacts by filtering out some PSF 
pixels with an intensity lower than the threshold intensity.  As a result, a nonsparse PSF 
becomes a sparse PSF, which is for good restoration results.  The effectiveness of the PSF 
filtering technique was validated by visual comparison using three test images captured 
by the SSLIS camera module.  In addition, a systematic way to determine the optimal 
filtering coefficient for a PSF at any FOV within the FOV range is also introduced.

1.	 Introduction

 The point spread function (PSF) plays a very important role in the formation and 
restoration of an image.  In an image formation model, the final recorded scene on the 
image sensor is a function of the PSF.(1–6)  The final image quality greatly depends on 
the size, shape, and intensity of PSFs distributed across the image area.  In the literature 
of image restoration, a PSF serves as a restoration kernel that can be used to restore the 
recorded blurred image to a deblurred one similar to the original scene.(1–6)  The image 
restoration process involves two-dimensional deconvolution between the PSF kernel 
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and the recorded image, which is usually discretized and carried out in matrix form.  If 
the PSF is spatially invariant, the matrix of the PSF takes the form of a block Toeplitz 
matrix with Toeplitz blocks (BTTB).(7–11)  It has been proved in our previous paper that a 
sparse PSF BTTB results in good restored image quality.(12)  The sparsity of a BTTB can 
be defined by the ratio of the bandwidth of the BTTB to the number of Toeplitz blocks 
in the BTTB, denoted β/n.  The bandwidth β is determined by the PSF size, while n is 
determined by the recorded image size.  If the PSF size is less than the image size, the 
ratio β/n will be small, which indicates a sparse PSF BTTB.  However, in many practical 
restoration problems, we need to deal with a large nonsparse matrix.  Restoration using a 
nonsparse BTTB directly introduces strong boundary ringing artifacts across the restored 
image.  Researchers in the field of image restoration have proposed iterative algorithms 
for reducing the ringing artifacts and gradually improve a restored image until it is 
similar to the original scene without changing the BTTB sparsity.  For example, Reeves 
proposed an iterative method to gradually approach the true solution of the padded 
elements of a lexicographically ordered column vector of the degraded image(13) (referred 
to as “the captured image” in our paper) such that the ringing artifacts are markedly 
minimized.  Although the iterative method is very effective and efficient for image 
restoration using a sparse PSF, it is time-consuming when the PSF matrix is not sparse.
 We proposed a spherical single-element lens imaging system (SSLIS) in our previous 
research,(12,14–17) aiming to reduce the optical complexity and manufacturing costs of 
a digital camera.  This imaging system introduces a radially expanding blur from the 
center to the four vertices of the image plane because optical aberrations such as field 
curvature become severe as the field of view (FOV) increases.  Since the imaging 
system has only a single-element lens, conventional optical means of reducing the blur 
using multiple lenses are not possible.  Therefore, we proposed an image processing 
method of reducing the blur that uses a polar domain deconvolution algorithm.(12,14)  This 
algorithm converts the recorded image and PSF to a polar coordinate system and carries 
out 2D deconvolution in the polar domain.  The PSF matrix used in the algorithm takes 
the form of a block Toeplitz matrix with circulant blocks (BTCB) rather than a BTTB 
because pixels on the left and right boundaries of the converted panoramic polar image 
are neighbors (see ref. 12 for details).  The aforementioned β/n ratio is also a key factor 
that affects the restored image quality.  Similarly to most of the spatially invariant blur 
restoration problems, a nonsparse matrix with a large β/n ratio will introduce severe 
ringing artifacts across the radially restored image, which may reduce the image quality.
 In this paper, we propose a PSF filtering technique for solving the radially variant blur 
restoration problem.  This technique increases the sparsity of a PSF BTCB by filtering 
out PSF pixels whose intensities are lower than the threshold intensity so that some low 
intensity entries in the BTCB become zeros.  The restored image is therefore visually 
superior owing to the decrease in the β/n ratio.  This technique does not markedly modify 
the original PSF shape and keeps the PSF pixel values that are higher than the threshold 
intensity unchanged.  Only the size of the original PSF is reduced.  This method does 
not involve an iterative algorithm, meaning that it is not computationally demanding.  
We believe that the proposed technique can also be applied to other image restoration 
problems.  The effectiveness of this technique will be demonstrated in § 3.
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2.	 Materials	and	Methods	

2.1 Spherical single-element lens imaging system (SSLIS) and radially 
expanding blur

 The SSLIS camera module is shown in Fig. 1(a).  It consists of a spherical single- 
element lens fixed inside a lens holder and a CMOS image sensor IC chip.  The lens has 
a double-convex shape and a fixed focal length of 10.0 mm.  Its refractive index is 1.673 
at the design wavelength of 587.6 nm.  The lens holder is screwed into the CMOS image 
sensor IC chip and the distance between the lens and the image sensor can be adjusted.  
The image sensor has 2048 [H] × 1536 [V] pixels and the image area is 6.6 × 4.9 mm2.  
The maximum FOV can be calculated using the equation ydiag = ƒ tan(θmax /2), where ƒ 
denotes the focal length and ydiag is the semi-diagonal distance.  The maximum FOV θmax 
is 44.6° for our SSLIS.
 The PSF distribution of the SSLIS across an image is shown in Fig. 1(b).  All the 
PSFs shown in the figure are drawn at the same scale, and it can be observed that the size 
of the PSF increases from low FOVs to high FOVs, indicating that the blur at high FOVs 
is severer than that at low FOVs.  As the imaging system is rotationally symmetric, 
some of the FOV corresponds to positions with the same distance from the image center.  
The PSFs at these positions can be regarded as the same PSFs in the polar coordinate 
system.  All the PSFs distributed across the image are radially expanding but rotationally 
invariant.

Fig. 1. SSLIS camera module and PSF distribution from low FOVs to high FOVs.  (a) 
Photograph of the SSLIS camera module.  (b) PSFs measured at semi-FOVs of 3, 7, 8, 9, 10, and 
14°.

(a) (b)
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2.2 Image restoration model and structure of PSF BTCB
 The polar domain deconvolution for radially variant blur restoration can be expressed 
as the following matrix-vector multiplication: 

 f̂  = (H*H + αL*L)−1H*g, (1)

where (H*H + αL*L)−1H* is a constrained least-squares filter.  The recorded scene on the 
image sensor and the restored image in the polar coordinate system are represented by 
the lexicographically ordered column vectors g and f̂ , respectively.  H and H* denote 
the PSF BTCB and its conjugate transpose, respectively.  The term αL*L in eq. (1) 
represents Tikhonov regularization, where α is the regularization parameter and L is the 
regularization operator.
 If the size of the polar image is m × n, then the column vectors g and f̂  will have nm 
× 1 entries and the BTCB H as well as L will have nm × nm entries.  The BTCB structure 
and its relation to the polar image and polar PSF are shown in Fig. 2.  As shown in Figs. 
2(a) and 2(b), the BTCB consists of n circulant blocks.  Those with nonzero entries are 
denoted by Hi, j (i = 1...n, j = 1...n) and those with all zero entries are represented by a 
space in Fig. 2.  The row and column bandwidths are marked in Fig. 2(a), which are both 
β.  Essentially, the bandwidths are determined by the polar PSF size along the vertical 
direction, which has 2β + 1 rows, as shown in Fig. 2(d).

Here,

Fig. 2. BTCB structure and its relation to the polar image and polar PSF.  (a) PSF BTCB structure.  (b) 
Circulant block in the BTCB matrix.  (c) Panoramic polar image converted and stretched from a 
recorded image.  (d) Polar PSF.

(a)
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Fig. 2 (continued).

Here,
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 The entries of each circulant block Hi, j are shown in Fig. 2(b).  Note that each row or 
column has m entries, in which the number of nonzero entries is 2α + 1.  α is determined 
by the polar PSF size along the horizontal direction, which can be confirmed from Fig. 
2(d).  The panoramic polar image converted and stretched from the recorded image is 
given in Fig. 2(c), which has m columns and n rows.  The line in the recorded image 
represents the location where the left and right boundaries of the panoramic polar image 
are connected, which is the reason why the PSF matrix has circulant rather than Toeplitz 
blocks.  It is then easy to find that the BTCB matrix size and the size of each circulant 
block are determined by the polar image size.  If the polar PSF is very small compared 
with the polar image (i.e., 2β + 1 rows in the polar PSF is very small compared with 
n rows in the polar image, and 2α + 1 columns in the polar PSF is also very small 
compared with m columns in the polar image), the circulant block and BTCB will 
become sparse matrices.  The trick in our PSF filtering technique is to reduce the polar 
PSF size without destroying its original shape, while maintaining the polar image size so 
as to increase the sparsity of the BTCB.  Details will be given in § 2.3.

2.3 PSF filtering technique 
 The fundamental principle of the PSF filtering technique can be summarized by the 
equation:

 It = pIm, (2)

where It denotes the threshold intensity level and Im denotes the maximum intensity of the 
PSF.  p is a filtering coefficient determining the threshold value It.  p is a value between 
0 and 1 expressed as a percentage; thus, eq. (2) indicates the percentage of the maximum 
intensity of the polar PSF that is assigned to the threshold intensity.  PSF pixels whose 
intensities are below this threshold are filtered out.
 The criteria for setting a reasonable coefficient p are different between different 
FOVs.  For the radially expanding blur generated by our SSLIS, the PSFs at low FOVs 
require a small p such that It is also small with respect to Im.  This is because the majority 
of the nonzero pixels of a low-FOV PSF are distributed around a very small area, and 
only a small fraction of the nonzero pixels, whose intensities account for a very small 
percentage of Im, are scattered outside this area.  Therefore, this small fraction of nonzero 
pixels can be filtered out by setting a small p.  As a result, the number of nonzero entries 
in the BTCB is very small compared with the numbers of rows and columns of the 
polar image; thus, the BTCB is a sparse matrix.  In contrast, the nonzero pixels of high-
FOV PSFs whose intensities are not small with respect to to Im are scattered around a 
large area.  In this case, p should be sufficiently large to filter out those pixels below 
the threshold intensity in order to reduce the area of nonzero pixels, thus increasing the 
sparsity of the corresponding BTCB matrix.  This can be explained visually by observing 
filtering for PSFs at semi-FOVs of 3 and 14°, and the change in the sparsity of their 
BTCB matrices before and after filtering in Fig. 3.
 The black areas shown in Figs. 3(a) and 3(b) indicate PSF pixels with zero intensity, 
while the other areas represent nonzero pixels.  The brighter the nonzero pixels, the 
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Fig. 3. Example of PSF filtering in 2D and 3D views.  (a) and (c) Filtering for PSF at semi-FOV 
of 3° in 2D view and 3D views, respectively.  (b) and (d) Filtering for PSF at semi-FOV of 14° in 
2D and 3D views, respectively.

nonzero pixels whose
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higher their intensities with respect to the maximum intensity Im.  It can be confirmed 
from Fig. 3(a) that, in the case of the PSF at 3°, the nonzero pixels are almost completely 
distributed around the polar PSF center and only a small fraction of pixels with a very 
low intensity are scattered elsewhere.  We assigned a small coefficient such as p = 
0.8% so that pixels whose intensities are below p = 0.8% of the maximum intensity 
were filtered out.  The β/n ratios before and after PSF filtering are 8.37 and 1.08%, 
respectively, which are marked in Fig. 3(a).  This suggests that the sparsity of the BTCB 
matrix of the polar PSF at a semi-FOV of 3° was increased effectively by setting a 
small coefficient.  As the semi-FOV increases to 14°, we note from Fig. 3(b) that there 
are more bright nonzero pixels in the polar PSF at 14° that are scattered across a wider 
area than they are in the polar PSF at 3°.  The intensities of these pixels are actually not 
low compared with Im.  We have to set a large coefficient such as p = 10% to filter out 
some nonzero pixels this time, otherwise the sparsity of the corresponding BTCB matrix 
cannot be increased effectively.  The values of sparsity before and after PSF filtering are 
marked in Fig. 3(b), and are 7.49 and 2.16%, respectively.
 Note that the β/n ratio of the polar PSF at 14° before filtering is smaller than that of 
the polar PSF at 3° because there are a large number of nonzero pixels with a very low 
intensity in the latter, which contribute more to the bandwidth β than those in the former.  
Since the polar image size does not change for different PSFs during image restoration, 
the β/n ratio of the latter is larger than that of the former.
 The polar PSFs before and after filtering are presented in a 3D view in Figs. 3(c) and 
3(d), respectively.  We give a 3D view because the changes in PSF shape and intensity 
due to PSF filtering cannot be observed directly in a 2D view.  In Figs. 3(c) and 3(d), 
the PSFs before and after filtering have the same scale in the x-, y-, and z-directions.  
We can observe that the original shapes of the polar PSFs at 3 and 14° did not change 
significantly; only the pixels with intensity below the threshold were filtered out.  The 
pixels with intensities above the threshold were unmodified.
 p can be chosen systematically as follows:  
1) Select PSFs at some discrete points of semi-FOV within the FOV range of the SSLIS.
2) For each PSF selected in 1), restore the blurred image using this PSF by setting 

different values of p.  Obtain an optimal p by trial and error.  The optimal p can be 
considered as a balance point where the error due to the nonsparsity in the form of 
ringing artifacts is not high, and the degree of smoothness of the restored image due 
to weakening of the PSF restoration kernel by modifying the original PSF shape is 
not high either.

3) Quantify the original PSF size by measuring the difference between the pixel values 
of this PSF and a black background of the same resolution whose pixel values are all 
zeros.  This can be calculated using root mean square error (RMSE), which is defined 
as

 RMSE =                         |o(i, j) − b(i, j)|2NM
1 N     M

i = 1  j = 1
∑ ∑ , (3)
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 where o(i, j) and b(i, j) denote pixels of the original PSF and the black background 
with zero entries, respectively.  N and M define the resolution of the PSF as well as 
the black background.  A PSF at low FOV will result in a small RMSE because it is 
small and vice versa.

4) Calculate the size shrinkage after filtering the PSF using the optimal p.  This time 
RMSE can be defined as

 RMSE =                         |o(i, j) − ƒ(i, j)|2NM
1 N     M

i = 1  j = 1
∑ ∑ , (4)

 where ƒ(i, j) represents pixels of the filtered PSF.  This equation defines the similarity 
between before and after PSF filtering.  A small RMSE indicates that the optimal p is 
small so that the size shrinkage is also small after filtering and vice versa.

5) Fit the data from the selected discrete PSFs to a polynomial function.  The horizontal 
axis is the original size of the PSF quantified by RMSE in step 3), the vertical axis is 
the size shrinkage after filtering by the optimal p, which is calculated in step 4).

6) Use the polynomial function obtained in 5) to determine an optimal p for PSF at any 
FOV according to the original size of the PSF.

 In the next section, we will investigate the effect of p on the restored image quality 
for different FOVs and give an example on how to determine an optimal p for PSF at any 
FOV by using the six steps described above.

3.	 Results

 To evaluate the PSF filtering technique, we used three test images captured by the 
SSLIS, as shown in Fig. 4.
 We selected PSFs at three semi-FOVs of 3, 7, and 14° to restore each captured image.  
For each PSF, we set three values for the filtering coefficient p to determine its effects on 
the sparsity of the PSF BTCB matrix and the PSF shape.  Table 1 gives the three values 
of p for these PSFs and the β/n ratios before and after PSF filtering.  Two-dimensional 
views of the PSFs are plotted in Fig. 5.  The images resteored obtained using PSFs at the 

Fig. 4. Three test images captured by the SSLIS camera module.
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Table 1
Values of p and β/n ratios before and after PSF filtering.
PSF at different 
semi-FOVs (°) 

Coefficient p 
(%) 

β/n before 
filtering (%) 

β/n after 
filtering (%) 

3 0.8 8.37 1.08
10.0 0.14
20.0 0

7 0.8 7.83 2.36
10.0 0.34
20.0 0.2

14 0.8 7.49 7.49
10.0 2.16
20.0 0.95

Fig. 5. 2D views of PSFs at 3, 7, and 14° before and after PSF filtering.  The first row shows the 
PSF at 3°, the second row shows the PSF at 7°, and the third row shows the PSF at 14°.  The three 
values of p are 0.8, 10, and 20% for each PSF.
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three FOVs and the three values of p are visually compared and presented in Figs. 6–
8.  Note that subregions are also compared in these figures for detailed observation.  The 
subregions are marked by rectangles in the captured images.
 The results shown in Table 1 and Fig. 5 suggest that, for PSFs at 3 and 7°, setting 
a large filtering coefficient p such as 10 or 20% will destroy the Gaussian-shaped PSF, 
leaving only a “cylinder”-shaped PSF, even though the β/n ratio is significantly reduced 
from 8.37 to 0.14% and 0 for PSFs at 3 and 7°, respectively.  This weakens the effect of 
the PSF as a deblurring (restoration) kernel.  As a result, the images resteored show little 
improvement in terms of deblurring compared with the captured image, which can be 
confirmed from (a), (c), (d), (f), and (g) in Figs. 6–8.

Fig. 6. Restored image comparison for test image 1.
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Fig. 7. Restored image comparison for test image 2.

 It can be observed from Fig. 5 that the shape of the PSFs at 3 and 7° after filtering 
using p = 0.8% did not change significantly.  Filtering reduced only the number of 
nonzero pixels that are below 0.8% of the maximum intensity Im of these PSFs.  We can 
confirm from Table 1 that the β/n ratios are reduced from 8.37 to 1.08% and from 7.83 
to 2.36% for the PSFs at 3 and 7°, respectively, indicating that the sparsity after PSF 
filtering greatly increased.  The images restored using p = 0.8% are also superior to those 
using other values of p, which can be observed from (b) and (e) in Figs. 6–8.  In contrast, 
setting a small p such as p = 0.8% for the PSF at 14° changed neither the sparsity nor 
shape of the PSF, which can be confirmed from Table 1 and Fig. 5.
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 As a result, the images shown in (h) in Figs. 6–8 were not well restored.  The image 
quality was reduced by severe ringing artifacts due to the large β/n ratio.  It can be 
observed from Fig. 5 that the intensities of the PSF pixels away from the PSF center are 
very low for the PSFs at 3 and 7°, but not for the PSF at 14° before filtering.  We have 
measured and marked in Fig. 5 the intensities of those nonzero pixels away from the PSF 
center and found that these pixels of the PSF at 14° account for 2 to 8% of the maximum 
intensity Im, which is the reason why a small p failed to increase its sparsity.  The sparsity 
was increased by setting a large p such as 10 or 20%, as shown in Table 1, which reduced 
the β/n ratio from 7.49 to 2.16 and 0.95%, respectively.  However, we can see from Fig. 5 

Fig. 8. Restored image comparison for test image 3.
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that the shape of the PSF at 14° is greatly changed from its original Gaussian shape when 
we set p = 20%.  This also results in poor restoration results, as shown in (j) in Figs. 6
–8.  The best results for the PSF at 14° are obtained by setting p = 10% and the images 
resteored are presented in (i) in Figs. 6–8.
 We can conclude that the PSF filtering technique is effective for reducing the β/n 
ratio and hence increasing the sparsity of a PSF BTCB matrix.  The filtering coefficient 
p is a function of FOV.  The restored image quality can be improved if p is suitably set 
for different FOVs.  An acceptable p should not only increase the sparsity but also not 
markedly modify the original PSF shape.  
 In the following paragraphs, we show an example on how to obtain an optimal p for 
a PSF at any FOV using the six steps described at the end of § 2.  Test image 1 will be 
used in this example. 
 In step 1), we select PSFs at semi-FOVs of 3, 7, 10, 14, 16, and 18° within the FOV 
range of the SSLIS.
 In step 2), we aim to obtain the optimal p for each of the six PSFs by trial and error.  
We found that the optimal p values for PSFs at semi-FOVs of 3, 7, 10, and 14° are 
approximately 0.8, 1.5, 7, and 10%, respectively.  The images resteored using different 
p values for the four PSFs are presented in Figs. 9–12.  The images resteored using 

Fig. 9. Determine the optimal filtering coefficient p at semi-FOV of 3° by trial and error. 
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the optimal p demonstrate fewer ringing artifacts than those restored using a smaller p 
because of an increased sparsity, and a better restoration result than in the case of using 
a larger p is obtained because the latter greatly modifies the original PSF shape (we 
show the 2D view of the PSF before and after filtering when using a larger p in Figs. 9–
12), which weakens the effect of the PSF restoration kernel and smoothens the resulting 
image.  As to PSF at 16 or 18°, we cannot find an optimal p by trial and error because 
the images resteored either present significant ringing artifacts across the image or 
demonstrates no improvement in terms of restoration (See Figs. 13 and 14).
 In step 3), we calculated the RMSEs for PSFs at semi-FOVs of 3, 7, 10, and 14° 
before filtering to be 0.6595, 1.0911, 3.2573, and 8.6226, respectively, using eq. (3).
 In step 4), we calculated the RMSEs for the four PSFs after filtering using the optimal 
to be 0.1255, 0.3680, 1.5230, and 4.3728, respectively, using eq. (4).  

Fig. 10. Determine the optimal filtering coefficient p at semi-FOV of 7° by trial and error.
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 In step 5), we drew a graph using the RMSE data of the four PSFs obtained in steps 3) 
and 4).  It is found that the relationship can be represented by a linear function, which is 
marked in Fig. 15.
 In step 6), we can obtain an optimal p for a PSF at any FOV within the range of 0 
to 14° using the linear function obtained in step 5).  For example, we want to determine 
the optimal p for the PSFs at semi-FOVs of 8 and 12°.  The original PSF sizes by RMSE 
are 1.8751 and 5.4549, respectively.  We can calculate from the linear function that 
the size shrinkages for the PSFs at 8 and 12° are 0.7811 and 2.6877, respectively.  The 
corresponding optimal p values are approximately 5.2 and 8.4%, respectively.  Figures 
16 and 17 give the images resteored using the calculated optimal p.
 

Fig. 11. Determine the optimal filtering coefficient p at semi-FOV of 10° by trial and error.
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4.	 Discussion

 The blur restoration in this paper used a single PSF to restore the whole test image, 
which is not desirable when we want to obtain a good restored image.  The radial blur of 
an SSLIS should be restored by multiple PSFs at different FOVs because of its radially 
expanding nature, which can be achieved by segmenting the panoramic polar image 
into different regions in which the PSF applied to each region can be regarded as locally 
invariant.  Note that, in (i) in Figs. 6–8, the regions near the image center were poorly 
restored by using the PSF at 14° because these regions are formed by low-FOV PSFs in 
the image formation process.  Therefore, these regions should be restored by low-FOV 
PSFs.  Details of restoration by segmenting a polar image and using multiple PSFs are 
documented in our previous works.(12,14)  The focus of this work is to demonstrate the 
effectiveness of the PSF filtering technique; thus, multiple PSF restoration by image 

Fig. 12. Determine the optimal filtering coefficient p at semi-FOV of 14° by trial and error. 
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Fig. 13. Restoration using PSF at semi-FOV of 16° with different filtering coefficients p.  No 
optimal  p can be found. 

Fig. 14. Restoration using PSF at semi-FOV of 18° with different filtering coefficients p.  No 
optimal p can be found. 



Sensors and Materials, Vol. 25, No. 7 (2013) 467

segmentation is not discussed here.  The six steps discussed above can also be used to 
determine the optimal p for each PSF used in the multiple PSF restoration process.
 On the other hand, although we are eager to compare the images resteored with the 
original scene using a quantitative means of evaluation such as the RMSE, it is difficult 
to find an original scene that is free of any distortion or blur.  Therefore, we merely 
evaluated the restored image visually in this paper. 

Fig. 15. Relationship between the original size of the PSF and the size shrinkage after filtering the 
PSF using an optimal p.

Fig. 16. Restoration using the PSF at semi-FOV of 8°, the optimal p is calculated from the linear 
function obtained in step 5).

Fig. 17. Restoration using the PSF at semi-FOV of 12°, the optimal p is calculated from the linear 
function obtained in step 5).
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 Furthermore, different imaging systems have different PSF distributions and hence 
the relationships between the original PSF size and the size shrinkage are also different.  
However, we believe that the six steps described in § 2 are not limit to the radially 
variant blur produced by the SSLIS, but can also be applied to other imaging systems 
with an different PSF distributions.  We will validate this in the future.
 Finally, PSF filtering may introduce an abrupt change in intensity at the threshold 
intensity level It, such as for the PSF at 14° filtered by p = 10 and 20% in Fig. 5.  This 
abrupt change in intensity can be considered to be at the edges of these filtered PSFs.  
When It is not small with respect to Im, these edges also introduce ringing artifacts to the 
restored image.  We could use a ramp or higher-order function to treat the PSF pixels 
with an intensity below It instead of treating them as zeros such that the edges of the 
filtered PSF can be smoothed.

5.	 Conclusions

 In this paper, we introduced a PSF filtering technique for restoring a radially 
expanding blur generated by a SSLIS.  The proposed technique increases the sparsity of 
a PSF BTCB matrix by filtering out PSF pixels whose intensities are below the threshold 
intensity.  The effectiveness of this technique was proved by the restoration of three 
images captured by the SSLIS camera module.  The investigation of different filtering 
coefficients for PSFs at different FOVs suggested that good restoration can be obtained 
when the original PSF shape is not markedly modified.  A systematic way to determine 
an optimal filtering coefficient for a PSF at any FOV was introduced as well.  Our future 
work will focus on the evaluation of this technique for other imaging systems that have 
different PSF distributions and involve a nonsparse BTTB or BTCB matrix.  
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