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	 We report an avian influenza surveillance system with wireless sensor nodes with 
which the activity of chickens can be continuously monitored.  Intermittent measurement 
is effective in decreasing the power consumption of a wireless sensor node.  However, 
the measurement interval must be short enough to obtain accurate data in activity 
measurement of a chicken.  In this case, the power consumption of the node is increased 
owing to the huge amount of transmission data.  In this research, we have developed 
and characterized a method of detecting an anomalous state of a chicken for the 
continuous activity monitoring with a small amount of transmission data.  The result of 
the simulation using data from infection experiments indicated that the average detection 
time was about 8 h before death and the necessary number of transmissions per hour was 
33.

1.	 Introduction

	 Ubiquitous sensor networks that consist of many wireless sensor nodes distributed 
in our surroundings and linked together are expected to be used in health and medical 
monitoring applications(1,2) as well as those of environmental monitoring, control, and 
security.  As an application of wireless sensor networks, our group has been developing 
a global avian influenza surveillance system by monitoring the health of chickens with 
wireless sensor nodes in poultry farms.(3)  The highly pathogenic avian influenza (HPAI) 
virus (H5N1) infection in birds has continued, and has acquired pathogenicity not only 
in birds but also in mammals.  The more cases of infected migratory birds and domestic 
fowls increase, the more human cases increase and the variation of the virus progresses.  
Consequently, the risk of the occurrence of a pandemic flu with transmissibility among 
humans increases.  Therefore, a global avian influenza surveillance system for the early-
stage detection of infected bird cases must be effective to defend human beings from an 
influenza pandemic.
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	 The concept of our avian influenza surveillance system is initial diagnosis by 
examining the body temperature and activity of chickens.  Figure 1 shows this system.  
The wireless sensor nodes are attached to several chickens.  When the surveillance 
system detects an anomalous state of the chickens, the system automatically alerts 
administrators through the internet.  
	 Previously, infection experiments were carried out using a prototype of wearable 
wireless sensor nodes that transmitted body temperature and activity data of chickens 
every 20 s.  A method for detecting the anomalous state of a chicken at an early stage 
was proposed, and how fast the anomalous state can be detected by the method was 
examined.  It was found that an unusual state could be detected several hours before 
death.(4)  However, the lifetime of the prototype wireless sensor node used in the 
experiment was about 2 weeks.  In this system, it is necessary for the nodes to work for 
two consecutive years or longer without battery replacement, because the period during 
which chickens lay eggs productively is about 500 d and replacing the battery of several 
thousand or more nodes is not practical.  In addition, since the weight of the wireless 
sensor node including a battery should be less than 1 g, a small button battery must be 
used.  If the transmission interval is increased to reduce the power consumption, the 
necessary data may be missed.  To decrease the power consumption, the measurement 
method must be fundamentally changed.
	 We have already reported a method in which continuous activity is measured with a 
piezoelectric microcantilever(5) and a custom LSI.(6)  The piezoelectric microcantilever, 
which generates voltage as a result of the chicken’s movements, is used as an activity 
sensor, and an embedded comparator with ultralow power consumption in the LSI 
is utilized for the input circuit of the cantilever.  In this work, we have clarified the 
detection time for the method of continuous activity measurement by simulation and how 
often the node must transmit the data to realize early detection.

Fig. 1.  Image of the avian influenza surveillance system with wireless sensor nodes. 
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2.	 Architecture of Wireless Sensor Node

	 Figure 2 shows the block diagram of a wireless sensor node that can continuously 
measure activity.  The piezoelectric microcantilever and the comparator with several tens 
of nA of current consumption make it possible to realize continuous measurement for 
more than 2 years using a small button battery.  In this system, basically, a transmission 
event occurs when the accumulated number of chicken movements with acceleration 
exceeding a threshold value (ThA) surpasses a preset number (ThN).(6)  Before the 
transmission event, the body temperature is measured using a thermistor.(7)  In this 
system, if the chicken is healthy and active, the transmission events frequently occur.  
On the other hand, if the chicken is sleeping or in an anomalous state, the number of 
transmissions decreases.  Since ThN is already known, the activity data need not be 
included in the transmitted packet.  The amount of activity can be deduced from the 
number of received transmissions per unit time.(8)  This can be a useful method for nodes 
that cannot transmit long packets owing to limitations of the power source.
	 The most distinct point from the prototype wireless sensor node is the activity 
measurement.  In this architecture, the activity of the chicken can be continuously 
monitored and the output value is ThN, not the value of acceleration.  Figure 3(a) shows 
an example of the body temperature and jerk of a chicken in the infection experiment.  
To eliminate the effect of gravity, jerk was calculated from acceleration measurements.(4)  
It was found that the activity of the chicken decreased several tens of hours before death.  
Figure 3(b) shows the histogram of jerk in Fig. 3(a) at the time of infection (84 – 108 
h) and for the healthy state (12 – 36 h).  Although some chickens showed a distinctive 

Fig. 2.　Block diagram of the wireless sensor node.
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difference in the amount of activity between the time of infection and the healthy state, 
some chickens indicated small changes, as shown in Fig. 3(b).  In the case of intermittent 
operation, the histogram indicates the probability at which each value of jerk can be 
measured.  Thus, if the measurement frequency is decreased, the shape of the histogram 
can be changed.  This can cause delay of detection or false detections, especially for 
chickens that show a small change of activity.  Actually, if the number of data values 
obtained in the infection experiment was reduced by half in the simulation, several hours 
of delay occurred.  On the other hand, if the activity is continuously measured, this 
problem does not occur.  

3.	 Simulation

	 In order to clarify how fast we can detect the anomalous state of the chicken using 
the wireless sensor node with the new architecture, a simulation was carried out.  The 
data of body temperature and jerk obtained from 14 chickens infected with the HPAI 

Fig. 3.  (a) Example of body temperature and jerk of a chicken in the infection experiment.  (b) 
Histogram of jerk in (a) at the time of infection (84 – 108 h) and in the healthy state (12 – 36 h).

(a)

(b) 
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virus, A/chicken/Miyazaki/K11/2007(H5N1) or CkMZ11,(9) were used in this simulation.  
The data had to be converted into data that could be obtained using the new architecture.  
Figure 4 shows the data to which those in Fig. 3(a) were converted.  The vertical axis 
indicates the number of movements with jerk of over 60 m/s3 per hour(4).  The criteria of 
this detection method are as follows.

	 Body temperature > 42 °C	 (1)

	 (Dift > ThD) and (Dift-1 > ThD) and (Dift-2 > ThD)	 (2)

	 Dift = Min(|Nt − Nt-26|, |Nt − Nt-25|, |Nt − Nt-24|, |Nt − Nt-23|, |Nt − Nt-22|)	

Death of the chicken was defined as the state in which the body temperature became 
lower than 30 °C.  The detection time indicates how fast we can detect an anomalous 
state before the time of death.  Since the basal body temperature of a chicken is about 41 
°C, we set the threshold temperature of fever to 42 °C.  Nt is the number of movements 
per hour with more than 60 m/s3.  ThD is the threshold value to check the difference in the 
amount of chicken activity between the present and 24 h before (Dift).  Since the daily 
activity of a chicken was not always the same, the activities before and after 2 hours 
were also compared.  In addition, to avoid false detection, especially at the transition 
between active time and rest time, it was checked if the anomalous state persisted for 3 
h continuously.  Thus, if the activity of a chicken is unusual for at least 3 h, the chicken 
is judged to be in an anomalous state by this system.  If ThD is small, a small amount of 
change can be detected.  Thus, the best value is minimum Dift without false detections.   
	 Table 1 shows the results.  The number of chickens detected on the basis of fever was 
5, of which 3, however, were identified faster than on the basis of activity.  The average 
detection time was 14.8 h.  The CkMZ11 virus did not cause very high fever.(10)  On the 
other hand, the activity of the infected chicken must decrease.  It was found that the 
optimum ThD was 12, and the average detection time by activity measurement was 8.14 h.  
The fastest and slowest detections were 22 h before and 2 h after death, respectively.

Fig. 4.  Converted data of those from the infection experiments.
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4.	 Experimental Results and Discussion

	 Figure 5 shows the wing-band-type wireless sensor node with the new architecture.  A 
wing band made from an aluminum plate is usually used for the identification of chickens 
and is affixed to the thin skin at the arm of the chicken.  In this node, a U-shaped pin 
is used to fix the node to a chicken’s arm as shown in Fig. 5.  In order to examine the 
optimum value of ThD, which does not cause false detection in the healthy state, for 
data obtained using this node, we attached the nodes to chickens in a chicken house.  
This chicken house is not a special facility for infection experiments.  The threshold 
voltage for the piezoelectric microcantilever was configured to change the output of the 
comparator if a chicken’s movement with more than 0.01 m/s2 (ThA) was applied in the 
node.  The value of 0.01 m/s2 is similar to the converted value of 60 m/s3.  The 60 m/s3 
can be converted to 0.008 m/s2 by means of multiplication by the measurement time of 
140 μs.(4)  The threshold number (ThN) used for the comparison of the number of chicken 
movements with acceleration of more than ThA was set to 100.
	 Figure 6 shows an example of the data obtained from the nodes over a period of 6 d.  
During the daytime, the number of transmissions received was about 100 and saturated.  
The wireless sensor node was configured not to transmit data continuously owing to the 
limitation of the power source.  In this experiment, the time was set to about 40 s.  It was 
found that there was a possibility that the threshold value of acceleration is smaller than 0.01 
m/s2 because the number of movements obtained during rest time is greater than the data 
in the infection experiment.  
	 We carried out the simulation using the above criteria and the obtained data.  It was 
found that false detection did not occur even when ThD was decreased to 6.  This result 
indicates that the data obtained with the developed wireless sensor nodes is more stable 
than the data in the infection experiment.  The infection experiment was carried out in 
a special facility of biosafety level 3.(9)  Although the environmental difference might 
have caused the difference in ThD, there is also the possibility that the continuous activity 
measurement increased the stability.  The small ThD makes it possible to detect small 
changes in activity.
	 If the transmission frequency is decreased, the power consumption of the wireless 
sensor node can be decreased.  Because every obtained data value indicates the same 
meaning, that is, there are 100 occurrences of movement with acceleration exceeding 
ThA, the number of data values received per hour can be decreased by increasing ThN.  

Number of detected chickens
Detection time (h)

Slowest Average Fastest
Activity                    14       −2       8.14       22
Body temperature                      5(3)*         9     14.8       18

Table 1
Result of the simulation.

* Three detections based on body temperature are faster than by activity.
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Six of ThD means a difference of 600 occurrences of movement.  Thus, although ThN can 
be increased to 600, we thought that half this value (300) might be necessary considering 
packet loss.  In this case, 33 transmissions per hour are required.

5.	 Conclusion

	 We characterized the detection method for the new architecture of the sensor node 
in the avian influenza surveillance system and found that the average detection time 
was about 8 h before death.  In the simulation, the optimized ThD was 12.  We also 
demonstrated the method using the developed wing-band-type wearable wireless sensor 
node.  The optimized value of ThD was 6.  In this case, the number of transmissions per 
hour can be decreased to 33.

Fig. 5.  Wing-band-type wireless sensor node with the new architecture.

Fig. 6.  Example of data obtained using the developed node for 6 d.
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