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 In this paper, we propose a system that can recognize odors in real time even in a 
highly fluctuating environment.  We used quartz crystal microbalance (QCM) sensors to 
detect odors.  We adopted the learning vector quantization (LVQ) algorithm because it 
is possible to identify complicated data using a small amount of computation resources.  
Moreover, we extracted the time constant of the QCM sensor with a short-time 
Fourier transform (STFT) unit to improve the identification rate.  Then, we performed 
identification experiments using pseudo QCM sensor signals that faithfully reproduced 
the previous data.  When we performed experiments on identifying the smells of apple, 
muscat, banana, and pineapple, we obtained an identification rate of about 90% despite 
the high fluctuation of odor concentration.

1. Introduction

 Currently, the development of an inspection device for food is desired for the safety 
and security of food.  Since smell detection is useful, an apparatus for identifying 
abnormal flavors of the food in real time should be established.
 A study of an odor recognition system has already been reported.  For example, 
toxic gases were identified using a system composed of conductive polymer sensors, 
application-specific integrated circuits (ASICs) for a sensor-signal compensation circuit 
and a k-nearest neighbor algorithm on the platform of an Intel 8051 processor.(1)

 However, a stable and ideal environment was assumed in the previous study.  Since 
sensor responses are disturbed significantly under a highly fluctuated environment, odor 
discrimination is not so easy in the real world.  In this work, we built an odor recognition 
system that can identify the smell even under a highly fluctuated environment.
 We have reported that the identification ability is increased by the extraction 
of the time constants of sensors using the short-time Fourier transform (STFT) 
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algorithm.(2)  Although this method was investigated using an off-line system, a real-
time odor recognition system is required in an actual environment.  Thus, we have 
developed a frequency measurement unit and an STFT unit(3) as well as a learning 
vector quantization (LVQ)(4) circuit.  All circuits were embedded into a single field-
programmable gate array (FPGA) to make the real-time system small.  The purpose of 
this study is to realize a compact odor recognition system that works in real time under a 
highly fluctuated environment.

2. Structure of Odor Recognition System

 The odor recognition system consists of quartz crystal microbalance (QCM) sensors, 
a frequency measurement unit, an LVQ unit, an STFT unit and a CPU core (Fig. 1).  To 
incorporate these units to FPGA, all the units except QCM sensors are composed of 
digital circuits.

2.1 QCM sensor
 In this study, we used QCM sensors coated with sensing films.  The resonance 
frequency of the QCM sensor is approximately 20 MHz.  We used four types of coating 
film, namely, Apiezon (Ap-L), polyethylene glycol 1000 (PEG1k), OV17 and Tricresyl 
phosphate (TCP).  The QCM sensors were connected to one-chip oscillation circuits with 
their frequencies measured using the following circuits.

Fig. 1. (Color online) Data flow of odor recognition system.
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2.2 Frequency measurement unit
 This unit measures frequency shifts of the QCM sensors.  As a frequency 
measurement method, we often use the direct counting technique where the number of 
signal pulses within the reference time is counted.  However, it is difficult to use it owing 
to the tradeoff between frequency resolution and time resolution.
 When the time resolution is enhanced, the maximum signal frequency increases 
according to the sampling theorem.  When we observe the spectrum of the measured 
signal, the frequency component above 0.5 Hz still has a contribution despite the little 
contribution of the frequency component above 4 Hz.  Since the 4 Hz bandwidth is 
necessary, our system requires 1/8 s time resolution, whereas the frequency resolution 
should be kept within 1 Hz.  Thus, we adopted the reciprocal counting technique where 
the number of clock pulses within the measurement signal cycle is counted.(5)  The block 
diagram of this unit is shown in Fig. 2, and has both a QCM sensor circuit for actual 
measurement and a built-in test signal generator.
 If we use the reciprocal counting technique, we must decrease the signal frequency 
since the original QCM frequency of 20 MHz is too fast to obtain sufficient frequency 
resolution.  Although a mixer is typically used to convert the signal to that in the low-
frequency range, 20 MHz signal is too fast for our digital mixer.  Thus, the 20 MHz 
signal is converted to the 2.5 MHz range using a divider and then is again converted 
to the 1 kHz range, where a sufficient frequency resolution is obtained, using a digital 
mixer.  The 2.501 MHz signal works as a local oscillator to obtain a 1-kHz-range signal 
from a 2.5-MHz-range signal.  8 Hz denotes the sampling frequency of the measurement 
data.
 The frequency resolution ∆f can be calculated using the following equation.  fin 
represents the digital mixer output frequency, fclk the clock frequency, and M the division 
ratio.

Fig. 2. Frequency measurement circuit.
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 However, the test signal generator was mainly used in this study since we must 
accurately reproduce data measured using the QCM sensor in the past during the debug 
and evaluation phases of the odor recognition system.
 The test signal generator includes a direct digital synthesizer (DDS) with ROM 
where previously measured QCM sensor data are accumulated, as shown in Fig. 2, and 
the pseudo QCM signal created using DDS is input to the reciprocal counter through 
a divider.  Since we have a large amount of data previously measured using the odor 
generator(2) under its programmed concentration sequence, we put this data into ROM.

2.3 LVQ unit
 We adopt LVQ as a classifier since it is suitable for hardware implementation.  Its 
algorithm is quite simple despite the high recognition capability.  The LVQ unit is a 
digital circuit based on the LVQ1 method.(4)

 Figure 3 shows the structure of the LVQ unit, and Table 1 shows the basic 
specification.  The distance calculation circuit (DCC) outputs distance between an input 

Fig. 3. (Color online) Structure of LVQ unit.

Table 1
Specification of LVQ unit.
Data width 16 bit (signed)
Dimension of odor vector 8
Number of input vector 1
Number of reference vector 64 (16 vectors per category)
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vector and a reference vector.  Sixty-four DCCs corresponding to reference vectors 
are implemented in parallel.  For simplicity of calculation, the DCC uses a Manhattan 
distance (city block distance), which can be realized using a simple adder and an absolute 
value calculator rather than a Euclidean distance accompanied by a large amount of 
multiplier circuit.
 The winner-take-all (WTA) circuit compares the calculated values of the DCCs and 
outputs the address of the DCC with the smallest output.  The CONTROL circuit controls 
the sequence of operation and allows a CPU core to access the RAM of the reference 
vector and the input vectors.
 The LVQ unit outputs the address of the nearest neighbor reference vector.  In 
learning mode, moving the reference vector is achieved by CPU core calculation of 
updating the reference vector, followed by its accumulation into RAM in the LVQ unit.

2.4 STFT unit
 An odor vector consists of 8-dimensional data: 4-dimensional data directly come 
from the frequency measurement unit, and the remaining 4-dimensional data come from 
the STFT unit.  The identification rate of odor is improved by the STFT unit.
 The STFT unit carries out Discrete Fourier Transform of the latest 32 points (32 
points/8 Hz = 4 s) using the Hann window.  The STFT unit calculates the amplitude of the 0.5 
Hz component because it was found from a previous study that 0.5 Hz components 
were useful for the discrimination.(2)  Although the STFT unit outputs DC and 0.5 Hz 
components, the 0.5 Hz component normalized with the DC component is actually used 
as the STFT output for the neural network.  The input data of the neural network is 
obtained every 1/8 s.  Although the STFT unit needs 4 s to obtain the spectrum data, it 
outputs the data every 1/8 s since it always uses the latest 32 points.
 Figure 4 shows the scattering diagram of the principal component analysis of the 
sensor responses to apple and muscat under a highly fluctuated environment where the 
odor concentrations were changed at random.  Figure 4(a) reveals that the smell of apple 

Fig. 4. (Color online) Scattering diagram of principal component analysis: (a) magnitude of 
sensor response and (b) STFT data.

(a) (b)



142 Sensors and Materials, Vol. 26, No. 3 (2014)

cannot be distinguished from that of muscat using only the magnitudes of the sensor 
responses.  Thus, we focused on the information based on the time constant of the sensor 
response.  Time constants of the sensor responses enable us to distinguish apple from 
muscat when we carefully look at the temporal data shown in Figs. 5(a) and 5(b).  Since 
the STFT data extract the difference in the time constant, the apple data were separated 
from the muscat data using the STFT data, as shown in Fig. 4(b).  

2.5 CPU core
 The role of the CPU core is to control peripheral units described above and to send 
the calculation result to the PC.  We designed the CPU core using a CPU development 
tool (SOPC builder) included in the FPGA development software (QuartusII 
Version11.1sp).
 The clock frequency of the CPU core was 30 MHz, and the size of the allocated 
program memory was about 130 kB.  The program code was written using C language.  
The CPU core works together with the LVQ unit and the STFT unit.  It also includes the 
following algorithms.

2.5.1 Odor existence decision
 A QCM sensor does not show a sharp response to odor.  Particularly in the recovery 
phase, the sensor response still remains even if the odor exposure stops (Fig. 6).  Since 
the sensor response in the recovery phase is different from the sensor response during 
the odor exposure, that data often causes misidentification.  The odor existence decision 

Fig. 5. (Color online) Comparison of sensor responses: (a) apple and (b) muscat.

(a)

(b)
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algorithm removes sensor responses without smells.  Odor existence was judged using 
the threshold updated adaptively to match the response characteristic of each QCM 
sensor.
 The transition from no-odor to odor-existence state is determined using the thresholds 
of the original signal and that of the transient response detection, which are statistically 
determined.  The median among the multiple sensor responses is used to determine 
the odor existence.  Moreover, the logarithm of that median is used to suppress the 
sensor response variation.  The transition from odor-existence state to no-odor state is 
determined when the current sensor response becomes much smaller than the latest data.  
Another threshold is used for that purpose and is updated according to the data for the 
period of the odor existence.

2.5.2 Majority voting
 The odor recognition system outputs the identification result every one-eighth second.  
In a real application, there is no problem with the time resolution longer than this period.  
Thus, we improved the identification rate by adopting a majority voting method.  Since 
the category of the majority within the latest 17 points, made up of the current data point 
in addition to the latest past 16 points, is picked up, this system has a time resolution of 
about 2 s (17 points/8 Hz).  We can wait for 2 s during real-time processing.

3. Experimental Method

 The experiment to identify four smells, namely, apple, muscat, banana, and pineapple 
was performed using the odor recognition system.

3.1 Experimental setup
 In the actual environment, we measure odor with the fluctuated concentration.  
However, since the odor concentration in air fluctuates irregularly, we cannot reproduce 
the concentration change faithfully.  Therefore, we measured the odor response using an 

Fig. 6. (Color online) Sensor responses.
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odor generator that was described elsewhere.(2)  We placed the odor generator in the room 
with controllable temperature.  Moreover, humidity was controlled by flowing the carrier 
gas through several vials filled with water.  Temperature and humidity were measured 
using a temperature humidity sensor (EK-H2, SENSIRION).
 In this study, we used the test signal generator instead of the actual QCM sensors.  
Moreover, we used a small FPGA board ACM022 (Humandata, FPGA: EP3C120F780C8N).
 Table 2 shows the resource of the odor recognition system embedded in FPGA.  The 
LVQ unit consumed the most logic elements, and they were mainly consumed by DCC 
circuits in the LVQ unit.  However, this FPGA with a moderate number of logic elements 
is sufficient for the implementation of the odor recognition system.

3.2 Experimental data
 In this experiment, we use four odor samples: apple, muscat, banana, and pineapple.  
The following four parameters were controlled.
 •  Temperature (°C)
 •  Relative humidity (%RH)
 •  Relative odor concentration (%RC)
 •  Concentration profile No. x
 Among these parameters, the relative humidity was fixed at 50 %RH, and the 
temperature was fixed at 25 °C.  The relative odor concentration means the concentration 
relative to the full scale.  Since the odor concentration is programmed to change 
every second, this concentration indicates the maximum one during one concentration 
sequence.  Furthermore, each concentration profile No. x is determined using a random 
number, and x indicates the ID of the random number sequence.
 When we evaluate the pattern recognition capability, the data for evaluation should be 
different from those for training.  Thus, the following two experiments based on a cross-
validation test were performed.

Experiment 1
 Learning was performed using the data of the relative odor concentration of 20 and 
80 %RC.  The data of 20, 40, and 80 %RC not used for training were used for evaluation.  
Concentration profile No. 3 was used.

Table 2
Resource of FPGA.
Unit name Logic element Memory bit
Frequency counter        614      65,536
LVQ   11,518        8,448
STFT     2,537        1,221
CPU     2,631 1,403,604
Other     3,649    796,119
All   20,949 2,275,008
FPGA(EP3C120) 119,008 3,981,312
Used (%)             17.6                57.1
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Experiment 2
 Learning was performed using the data of odor concentration profiles Nos. 1 and 3.  
The data of concentration profiles Nos. 1, 2, and 3 not used for training were used for 
evaluation.  The relative concentration was 80 %RC.
 These sensor response data were accumulated in the memory.  The number of 
concentration sequences per odor sample was 10.

4. Evaluation of System Robustness against Concentration Fluctuation

 Before performing the identification experiment, we observed the movement of the 
reference vectors that are important in the LVQ method.  This evaluation uses apple and 
muscat odors.  Figure 7 shows the result of principal component analysis.
 In Fig. 7(a), initial reference vectors were extracted from input vector data of the 
same category.  By performing the learning operation, the reference vectors were moved, 
as shown in Fig. 7(b).  In the comparison of Fig. 7(b) with Fig. 7(a), the reference vectors 
are located, reflecting the distribution of the same category of input data.
 Next, we performed the identification experiment.  Learning and identification 
conditions are as shown in the previous section.  The experimental conditions of LVQ are 
tabulated in Table 3.  The sampling rate of the sensor data was 8 points/s.  The learning 
coefficient monotonically decreased, and it became 1/(27 + i) during the i-th epoch.
 Then, we conducted two experiments under the conditions described above.  First, 
we performed two-category classification (apple-muscat and banana-pineapple).  Two-
category classification means the data are just classified into one of two categories.  
There are two cases of two-category classification such as “apple versus muscat” and 
“banana versus pineapple”.  The response patterns of apple and muscat were similar, in 
the same manner that those of banana and pineapple were similar.  Then, we performed 

Fig. 7. (Color online) Result of principal component analysis of reference vector: (a) before and (b) 
after learning.

(a) (b)
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four-category classification (apple, muscat, banana, and pineapple).  The details of 
experimental data were described in the previous section.  Table 4 for experiment 1 
and Table 5 for experiment 2 show the result of the identification rate evaluations.  The 
number in brackets is the correct answer rate without the majority voting method; the 
number without brackets is the correct answer rate when adopting the majority voting 
method.  The four-category classification is indicated as “ALL” in Tables 4 and 5.
 The identification rate was almost 90% in both tables.  This result shows that the 
proposed odor recognition system is sufficiently robust to keep up with the rapid 
concentration changes sufficiently.  Moreover, the identification rate was improved by 
9.2% when we adopted a majority voting method.  In the two-category identification 
experiment, the identification rate of the apple-muscat set was better than that of the 
banana-pineapple set in most cases.  Since the difference in the sensor’s time constant 
between banana and pineapple was not clear, the STFT’s contribution was not so much 
in the banana-pineapple case.

Table 4
Identification exam when relative concentration changes: temp., 25 °C; humidity, 50 %RH; 
concentration profile, No. 1.
Concentration Apple-Muscat (%) Banana-Pineapple (%) ALL (%)
20 %RC 100.0 (89.0) 89.3 (83.1) 90.4 (83.8)
40 %RC   94.3 (86.8) 85.3 (80.5) 91.0 (81.8)
80 %RC   98.1 (92.0) 93.9 (85.0) 91.5 (85.9)

Table 5
Identification exam when concentration profile changes: temp., 25 °C; humidity, 50 %RH; 
concentration, 80 %RC.
Concentration-profile Apple-Muscat (%) Banana-Pineapple (%) ALL (%)
No. 1   82.2 (80.0) 86.2 (84.0) 78.6 (75.5)
No. 2   90.5 (82.2) 93.2 (85.2) 88.4 (82.7)
No. 3 100.0 (92.0) 89.0 (82.3) 93.0 (86.5)

Table 3
Conditions of LVQ.
Data dimension 8 (Sensor 4+STFT 4)
Number of epochs for learning 20
Number of learning data 400/category
Learning coefficient α 1/(27+i) at ith epoch
Number of reference vectors 64

32/category for two-category classification
16/category for four-category classification

Number of data for classification 1200
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5. Conclusions

 We developed an odor recognition system using the LVQ method, which can identify 
odor types under a highly fluctuated environment.  The whole system except the QCM 
sensors was implemented into an FPGA.  In this study, the combination of the magnitude 
of the QCM sensor responses with their frequency components was used to improve the 
identification rate.  When we performed the experiments on identifying smells of apple, 
muscat, banana, and pineapple, we obtained the correct answer rate of about 90% despite 
the high fluctuation environment.
 In the future, we will apply this system to actual measurements.  Moreover, a tiny 
system for embedding into various systems will be realized.
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