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	 Odor sensors can benefit various areas of human activity and have been increasingly 
studied.  For developing odor sensors, comprehensive detection of numerous volatile 
molecules is necessary.  These advanced odor measurements might be accomplished 
by inspiring technology based on the bio-olfactory system.  This system recognizes and 
discriminates odors by activity patterns, which are formed based on odor information of 
odorants extracted from olfactory receptors (ORs).  Hence, odorants are appropriately 
categorized into clusters with different molecular features.  The odor clustering close to 
biological olfaction can also be applied to the sensor systems.  In this study, odor map 
images of rats investigated in biological studies were analyzed by principal component 
analysis (PCA) to clarify odor clustering features of olfaction.  The definition of odor 
cluster and extraction of geometric features of odor maps were examined based on the 
primary components and factor loadings.  Then, key parameters expressing clusters and 
measurable in sensor technology were successfully explored by evaluating the correlation 
between principal components and molecular parameters calculated using the molecular 
modeling software.  Finally, artificial odor maps were reconstructed based on the defined 
odor clustering map, and the similarity between odor maps of rats was confirmed.  

1.	 Introduction

	 Recently, the needs for sensing of dangerous or hazardous volatile organic 
components (VOCs) and the simultaneous monitoring of various chemicals in air 
have been increasing.(1–3)  Sensor devices using an unspecific sensor array, e.g., E-nose 
technology, enable the detection and classification of some VOCs.(4–7)  However, since 
it is said that there exist hundreds of thousands of types of odorant that humans can 
perceive,(8) it is very difficult to measure numerous chemicals and odors consisting of 
various chemicals using cross-selective sensor arrays.  Therefore, sensor systems that can 
comprehensively detect and simultaneously discriminate odors are required.
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	 Here, biological olfaction performs these comprehensive measurements and 
discrimination of the differences in odors.  It is thought that humans can detect volatiles 
in ppt - ppm levels and express the differences among odors.(9)  Therefore, high 
performance in odor measurements might be accomplished using a sensor technology 
that imitates the recognition mechanism using molecular parameters of odorants as bio-
olfactory recognition processes.  In the olfactory mechanism, when mammals smell 
odors, olfactory receptors (ORs) trap constituent odorants and recognize molecular 
properties, e.g., complex shapes and functional groups of molecules.(10)  Then, the active 
signals of ORs are separately transmitted to glomeruli on the olfactory bulb (OB)(11,12) 
which is the first terminal of olfaction.   Finally, the activity pattern of the odor (odor 
map) is formed on the surface of OB based on OR signals.(13–15)  Thus, the molecular 
information of odorants is integrated into odor maps.
	 In addition, it is found that the areas in odor maps activated by each odorant are 
definitely located, i.e., the odor map is categorized into clusters with different molecular 
features.  For instance, glomeruli activated by fatty acids belong to cluster A.(8,16,17)  This 
geometrical categorization is called “odor clustering”, where the positional relation 
among clusters is important.  Furthermore, humans cannot perceive every constituent 
of odors separately.  Odor maps formed based on OR signals become the first internal 
expressions of odor in the brain.  In fact, biological olfaction carries out the compression 
of numerous numbers of odor information, and then discriminates the differences in 
odors on the basis of these clustering patterns.
	 Advanced odor sensing could be realized using sensor devices that can construct 
an odor clustering map of biological olfaction.  Therefore, with the aim of sensor 
applications, the definition of odor clustering and the extraction of key parameters 
essential to bio-olfactory odor measurement were examined by analyzing biological 
images that represent the activity patterns formed on OB of rats.  Then, artificial odor 
maps were constructed to confirm the accuracy of odor clustering and visualize the odor 
information.  The present analysis makes it possible to relate molecular information 
of odorants and molecular parameters that can be detected using physicochemical 
principals.

2.	 Methods

2.1	 Analysis of odor maps
	 As mentioned in the previous section, the molecular profiles of odorants and 
clustering features acquired for measuring odors were projected into odor maps.  
We analyzed odor mapping images of rats to determine clustering processes of 
biological olfaction.  These images have been developed using uptake of radiolabeled 
2-deoxyglucose in the Leon laboratory(18–20) and are provided publicly on their website 
(http://gara.bio.uci.edu/) as grayscale images of rats equivalent to 321 types of odorant.  
	 In this study, the extraction of fingerprints of clusters and dimensionality reduction 
were attempted using principal component analysis (PCA).  Odor maps of rats were 
analyzed as follows.  First, 197×357 pixel matrices were prepared from 321 types of 
grayscale image.  Second, after the basis vectors have been calculated from 321 types of 
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matrix with PCA, pixels not attributed to the activity patterns were removed.  PCA was 
calculated on the autoscaled data set.  Third, treated matrices were repeatedly analyzed 
by PCA.  The principal component (PCn) scores and factor loadings of rat images were 
calculated.  Finally, concerning each PCn, pixels with smaller absolute valued factor 
loading were also removed.

2.2	 Correlation among principal components and molecular parameters
	 To explore key parameters essential to odor clustering, the correlation between 
principal components produced in § 2.1 and various molecular parameters of odorants 
was evaluated.  76 types of molecular parameter of 321 types of odorant corresponding 
to grayscale images of rats were calculated using computational packages, e.g., MOPAC 
and GAMESS, of chemBio3D software (CambridgeSoft).  The calculated parameters are 
shown in Table 1.  In this study, Pearson’s product-moment correlation coefficients were 
computed to confirm the correlation between PCn and each molecular parameter.

2.3	 Construction of artificial odor maps
	 It was assumed that activity regions of each cluster in odor maps become “ellipse” 
shapes.  Artificial odor maps were composed of ellipses representing clusters and the 
activity “intensity”.  Two coordinates x and y of maps coincide with the odor maps of 
rats developed in the Leon laboratory.(18–20)  Because the regions around active parts are 
gradually weakening in odor maps, the activity pattern in each cluster could be assumed 
to be decreasing from the center of the ellipse in accordance with Gaussian function.  
Finally, grayscale images of artificial maps were created on the basis of the position of 

Molecular parameter
Balaban index DIPOLE-BASED-GAM ZZZZ Hydrophilic-lipophilic balance (HLB) Polar surface area
Boiling point Elemental analysis (C) Ideal gas thermal capacity Potential energy
Cluster count Elemental analysis (H) Ionization potential Principal moment
Connolly accessible area Elemental analysis (N) Kinetic energy Radius
Connolly molecular area Elemental analysis (O) Partition coefficient (Log P) Shape attribute
Connolly solvent excluded volume Elemental analysis (S) m/z Shape coefficient
Core-core repulsion ENERGY-BASED-ALPHA ZZ Melting point Straight carbon number 
COSMO area ENERGY-BASED-BETA ZZZ Mol refractivity Sum of valence degrees
COSMO volume ENERGY-BASED-DIPOLE Z Molecular depth Surface area
Critical pressure ENERGY-BASED-GAM ZZZZ Molecular length Topological diameter
Critical temperature Estimation of Henry’s constant (H) Molecular topological index Total dipole
Critical volume Exact mass Molecular volume Total energy
Dipole moment (MOPAC) Formal charge Molecular weight Total valence connectivity
DIPOLE-BASED-ALPHA XZ Freezing point Molecular width Vapor pressure
DIPOLE-BASED-ALPHA YZ Gibbs free energy MR Water solubility
DIPOLE-BASED-ALPHA ZZ H bond acceptor Normal boiling point Wiener index
DIPOLE-BASED-BETA XZZ H bond donor Number of rotatable bonds
DIPOLE-BASED-BETA YZZ Hansen polarity Ovality
DIPOLE-BASED-BETA ZZZ Heat of formation Percent hydrophilic surface
DIPOLE-BASED-DIPOLE Z Henry’s law constant  Acid dissociation constant (pKa) 

Table 1
Molecular parameters calculated using computational properties of chemBio3D software. 
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Fig. 1.  (Color online) Odor map images distributed by factor loadings of PC1 to PC6, which were 
colored as the contour scale.

(c)  PC3(a)  PC1 (b)  PC2

(f)  PC6(d)  PC4 (e)  PC5

each cluster and activity pattern.  These grayscale images were colored using ImageJ 
software (NIH).
	 Artificial maps produced in this study were transformed to odor map images of rats.  
Therefore, the intensities of activity patterns in each cluster were calculated from the 
average brightness value of the cluster ellipse in rat maps.  Here, if the sensor responses 
corresponding to each cluster can be obtained, the construction of artificial odor maps 
classified into clusters becomes possible.   Hence, the comprehensive detection and 
appropriate categorization of odors might be realized.

3.	 Results and Discussion

3.1	 Definition of odor clustering map
	 Principal components were calculated from 321 types of grayscale image of rats 
with PCA.  As a result, the cumulative contribution from PC1 to PC80 has reached 80%.  
Concerning each principal component, factor loadings responding to all pixels were 
determined.  Therefore, odor images were distributed depending on both positive and 
negative values of loadings.  However, because most factor loadings were smaller in PC7 
to PC80, most corresponding pixels were removed.  Therefore, areas allotted in odor 
maps became narrow.  In this study, important principal components from 1 to 6 were 
focused on.  Thus, these important principal components colored as the contour scale are 
shown in Fig. 1.  These figures suggested that the odor images could be divided into 9 
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Fig. 2.  (Color online) Scatter plots of (a) PC1 and PC2, (b) PC3 and PC4, and (c) PC5 and PC6 of 
the PCA model calculated using 321 types of grayscale image of rats.

(c)

(a)

(b)

independent areas.  To confirm whether these areas are equal to odor clusters, principal 
scores were plotted in Fig. 2. 
	 Figure 2 shows that odorants with cyclic and straight structures were grouped in 
higher positive and negative areas of PC1.  Specifically, odorants with more than nine 
carbon chain length were scattered in positive areas.  Moreover, in higher positive 
and negative areas of other components, odorants with the same molecular features, 
e.g., hydrocarbon, fatty acid, aldehyde, and phenol, were also gathered.  These results 
represent that nine activity regions divided with PCA were classified on the basis of 
information on molecular size and functional groups.  
	 Here, individual ORs recognize odorants with certain several consecutive carbon 
chain lengths and certain functional groups, and then biological olfaction forms odor 
maps using different combinations of active signals from ORs.(10) 
	 It is considered that the odor maps are also classified on the basis of molecular 
features of odorants.  The olfactory mechanism was consistent with PCA experiment 
results that activity patterns were assorted on the basis of the carbon-chain number and 
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functional groups of odorants.  Hence, these categories are potentially equivalent to 
odor clustering of biological olfaction.   The nine classified clusters and the common 
characteristics of odorants activated in each part are described in Fig. 3.  These nine 
clusters were obtained through a combination of areas corresponding to the six described 
principal components. This odor clustering map has no discrepancy with the results of 
other studies.  For instance, the cluster A area was activated by fatty acids.(8,17)  A variety 
of odorants can be categorized into the corresponding clusters, by viewing activity 
patterns of the odor maps of rats.

3.2	 Extraction of key parameters describing odor maps
	 It was shown that odor measurements were realized by discriminating functional 
groups of constituent odorants.   However, it is difficult to measure only the partial 
structure of molecules.  To apply odor clustering to the sensor technology, a measurable 
molecular parameter corresponding to each cluster needs to be explored.  For the 
extraction of such key parameters, correlation coefficients between PCn and molecular 
parameters obtained using the molecular modeling software were calculated.  The 
correlation results are shown in Table 2.  In Table 2, correlated parameters and maximum 
correlation coefficients are described.  As a result, the parameters correlated with positive 
and negative principal components could be explored.  Because the number of rotatable 
bonds and molecular size have more associations with PC1, higher or lower regions [Fig. 
1(a)] were potentially activated by odorants with benzene rings or larger carbon chain.  
Moreover, it was found that the polarity information, e.g., acid dissociation constant (pKa) 
and partition coefficient (log P), can become key information parameters.  It is quite 

Fig. 3.   (Color online) PCA-combined odor clustering map classified by functional groups of 
odorants.
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Table 2
Correlation results between principal component scores and molecular parameters.  Correlated 
parameters and maximum correlation coefficients are described.

PCn PC1 PC2
+ − + −

Correlated parameters Number of
rotatable bonds Molecular length Water solubility Elemental analysis

(I, S)
Maximum correlation
coefficient 0.56 0.56 −0.72 0.42

PCn PC3 PC4
+ − + −

Percent hydrophilic
surfacepKa Polar surface area

Correlated parameters Ester structure Critical temperature Straight carbon number Log P
Boiling point Log P Partition coefficient

HLB
Maximum correlation
coefficient −0.62 0.63 −0.69

PCn PC5 PC6
+ − + −

Correlated parameters pKa Vapor pressure pKa
Maximum correlation
Coefficient 0.35 0.51 0.42

reasonable that these parameters were chosen because it is said that they are important 
factors in receptor science.  However, not all the parameters explaining clusters or 
representing the positional relation between clusters were searched.
	 The geometric progressions in odor maps of rats correlated with key parameters are 
described in Fig. 4.  Arrows indicate the activity progression by various incremental 
differences in structure.  As shown in Fig. 4, the regions of odor maps are classified by 
the degree of hydrophobicity and hydrophilicity of volatile chemicals, and activity parts 
progressively move according to increasing log P or hydrophilic-lipophilic balance (HLB) 
(blue arrow in Fig. 4).  Furthermore, chemotopic progressions by pKa and molecular size 
also occur in hydrophobic and hydrophilic regions.  Consequently, odor clustering maps 
could be roughly constructed using these key parameters, which can be measured by 
physicochemical methods such as multichannel sensor arrays.  

3.3	 Imaging of odor information
	 Because odor maps contain various molecular properties, artificial odor maps 
enable not only the visualization but also comprehensive qualitative classification of 
odors.   In this study, artificial maps of three types of odorant, butyric acid, decanal, 
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Fig. 4.  (Color online) Odor map images and geometric progression described by correlated key 
parameters with principal component scores.

and acetoxyacetone, which belong to clusters A, B, and D from odor map patterns, 
respectively, were constructed on the basis of nine ellipses and activity intensities 
calculated from rat images.  For evaluating constructed maps and verifying the accuracy 
of defined odor clustering, the similarity of individual odor map images was expressed 
using the multidimensional scaling (MDS) method.  MDS can visualize datasets 
representing the cosine similarity between prepared images, preserving the distance 
between images as much as possible.  Therefore, images with similar patterns can be 
plotted closely in MDS.  In this study, the cosine similarity was calculated between 
active regions of images.
	 The similarity between artificial maps and rat maps corresponding to 35 odorants was 
evaluated by the MDS method.  These maps of rats are categorized into different odor 
clusters.  Figure 5 shows an MDS scatter plot.  Odorant images of rats classified clearly 
into the same clusters on the basis of odor clustering maps in Fig. 3 were closely grouped 
in Fig. 5.  This indicates that individual patterns activated by odorants belonging to the 
same cluster were similar.  We considered that the defined odor clustering was close to 
that of biological olfaction.  
	 In addition, artificial odor maps have high similarity to raw odorant images and could 
be classified into the same cluster.  We concluded that the odor map imaging proposed 
in this study enables the compression of odor information acquired for recognizing 
and discriminating odors by the same manner as the olfactory mechanism.  Then, the 
visualization and classification of various odors become possible using odor clustering 
maps.  
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Fig. 5.  (Color online) Similarity plot visualized by MDS.  Plotted maps correspond to rat images 
of odorants belonging to clusters and artificial odor maps.  Raw maps were cited from public data 
of the Leon laboratory.

4.	 Conclusions

	 We succeeded in defining appropriate odor clustering using odor map images of rats 
with PCA and exploring important molecular parameters for odor clustering.  Then, odor 
images of rats were successfully transformed and efficiently compressed to artificial 
odor maps.  Thus, odor maps are easily and precisely constructed by measuring these 
parameters with a sensor array.  
	 In our other works, the sensor system with high molecular recognition ability for 
extracting molecular parameters from measured volatiles was already realized.(21,22)  
That system can detect and measure various odors using a molecularly imprinted filter.(23,24)  
Consequently, comprehensive odor sensing is possible using the developed sensor system 
incorporated with defined odor clustering shown in this study.
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