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	 In this study, a type of hysteretic nonlinear model of giant magnetostrictive materials 
(GMMs) based on the inverse magnetostrictive effect was developed, and the nonlinear 
dynamic characteristics of a giant magnetostrictive sensor were studied.  A Van der Pol 
nonlinear item was introduced to describe the hysteretic phenomena of GMMs, and the 
coupling relationship between strain and frequency was determined.  The results of a 
forecast test show that the GMM model can describe well the inverse magnetostrictive 
effect in different frequencies.  On the basis of the GMM model, the magneto-
mechanical coupled model of a giant magnetostrictive sensor was developed, and the 
relationship between output voltage and input excitation force was determined.  The 
nonlinear dynamic characteristics of the giant magnetostrictive sensor were discussed, 
and the phenomena of accuracy aggravation in high frequency and delay of a giant 
magnetostrictive sensor were explained.  The experimental results show that the model 
can describe the actual response of the giant magnetostrictive sensor.  The new model 
of the giant magnetostrictive sensor has a simple form and is easy to analyze in theory, 
which is helpful for application in measure and control fields.

1.	 Introduction

	 A giant magnetostrictive material (GMM) converts mechanical energy into magnetic 
energy, which is known as the inverse magnetostrictive effect or the Villari effect.  On 
the basis of this effect, giant magnetostrictive sensors used in micro-electromechanical 
systems (MEMS) can be designed.  Giant magnetostrictive sensors have many 
advantages, such as small size, rapid response, long service life, and wide range of 
measurement, and are widely applied in vibration measurement fields.(1) 
	 Many scholars have studied giant magnetostrictive sensors.  Jia et al. designed a 
novel force sensor based on a giant magnetostrictive material.(2)  Yan et al. developed the 
dynamic model of giant magnetostrictive acceleration sensors including Eddy-Current 
effects.(3)  Huang et al. developed novel sensors based on magnetostrictive/piezoelectric 
laminations.(4)  Pacheco and Bruno studied the effect of shape anisotropy in giant 
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magnetostrictive fiber Bragg grating sensors.(5)  Although many advances have been 
obtained, the modeling problem of the giant magnetostrictive sensor limits its application 
in industry.(6)  To optimize giant magnetostrictive sensors effectively, it is necessary to 
build its model with high accuracy.  
	 Most of the physical models of GMM were shown as equations with subsection 
function or double integral function, which were difficult to analyze in theory owing 
to the hysteretic characteristics of GMM.(7–9)  Usually, research results could only be 
obtained by numerical or experimental methods.(10–12)  In this study, a Van der Pol 
nonlinear item was introduced to interpret the hysteretic phenomenona of GMM, and the 
dynamic characteristics of the giant magnetostrictive sensor were studied.  

2.	 Hysteretic Nonlinear Model of Giant Magnetostrictive Material

	 The strain-magnetic field intensity (MFI) curve of GMM is shown in Fig. 1.  In this 
study, a Van der Pol hysteretic model was introduced to describe the hysteretic nonlinear 
characteristics of GMM based on the inverse magnetostrictive effect.
	 The strain-MFI curve of GMM can be shown as follows when it is supposed to be 
symmetrical about the point G (ε0, H0).

	 H = + 2 + 3 + β( − 2 )   ˙χ ε εε εφε ε ρα 	 (1)

	 From Fig. 1, we can see that frequency can also affect the magnetoelasticity of 
GMM, which means that there are items coupling the strain and frequency.  Supposing 
that all the coupling items will appear in the model, the basic model of H can be shown 
as follows.
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Fig. 1.	 (Color online) Strain-MFI curves of GMM at different frequencies.
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	 In this study, a partial least-squares regression method was applied in finding the 
concise coupling relationship between strain and frequency.  Reading experimental data 
from Fig. 1 and regarding the items in eq. (2) as independent variables, we obtained the 
analysis result of the principal component, which is shown in Fig. 2.
	 According to variable importance, the variables that are the most significant (VIP > 0.8) 
in the basic model were chosen as follows: ε, ε2, ε3, ·ε̇ε , 2ε ·ε̇ , and 3ε ·f .  Thus, the final 
relationship among strain, MFI and frequency can be shown as follows.

	 H = a1 + a2
2 + a3

3 + a4 ˙+ a5
2 ˙+ a6

3 fεεεεεεε ε 	 (3)

	 The result of the forecast test using eq. (3) is shown in Fig. 3, where the red line 
represents real data and the black line indicates forecast value.  Obviously, eq. (3) can 
describe the real curve well.

3.	 Dynamic Characteristics of Giant Magnetostrictive Sensor

	 A typical structure of the giant magnetostrictive sensor is shown in Fig. 4, and the 
mechanical model of the giant magnetostrictive sensor is shown in Fig. 5, where mr is 

Fig. 2.	 (Color online) Analysis result of principal component.

Fig. 3.	 (Color online) Result of forecast test.
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the mass of the Terfenol-D rod, m1 is the equivalent mass of the load, Cr is the structural 
damping of the sensor, C1 is the equivalent damping of the load, kr is the stiffness of the 
Terfenol-D rod, k1 is the equivalent stiffness of the load, and F(t) is the excitation force.
	 The dynamic model of the giant magnetostrictive sensor can be shown as

	
mr 0
0 mr

ẍr

ẍ1
+ cr 0

0 0
ẋr

ẋ1
+ k1 + kr −k1

−k1 k1

xr

x1
= 0

F(t) 	 (4)

where xr is the giant magnetostrictive sensor and x1 is the load displacement.
	 If F = F(t) = Fcosωt, we obtain

	 xr = l
[k1 (m1 + mr ) − ω2m1mr ]2 + ω2c2

r (m1 + mr )2

a2 + b
2

Fcosωt = n1 Fcosωt=ε 	 (5)

where

	 =
[k1 (m1 + mr ) − ω2m1mr ]2 + ω2c2

r (m1 + mr )2

a2 + b
2

n1 	 (6)

	 a  = ω4m1mr − ω2(2k1mr + krm1 + k1m1) + 2k1 (kr + k1)	 (7)

	 b  = ω2cr(m1 + mr) + ωcr(3k1 − kr)	 (8)

According to eq. (5), the output voltage U of the giant magnetostrictive sensor can be 
shown as

	 U = δH = δ(a1ε + a2ε2 + a3ε3 + a4ε·ε̇ε  + a5ε2·ε̇ε  + a6ε3f ) = U0 + UL + UNL,	 (9)

Fig. 4 (left).  Structure of giant magnetostrictive sensor.
Fig. 5 (right).  Mechanical model of giant magnetostrictive sensor with load.
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where δ is the magnification coefficient.
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Now, we can discuss eq. (9).
1)	There are three types of frequency component: ω, 2ω, and 3ω in voltage U.
2)	Owing to the existence of items sinωt and cosωt in UNL, the phase of the voltage 

waveform is different from that of the excitation force.

3)	 U0 =
δa2n2

1

2l2
F

2 is constant when F  is determined, and can be adjusted to zero.

4)	 UL = δ
a1n1

l
F  is linear with F, so U = UL is ideal.

5)	UNL is nonlinear.  It is the error between the actual output voltage and the linear scale 
of the giant magnetostrictive sensor, which is inevitable but can be reduced.

6)	From eq. (12), we can see that UNL is relative to ω.  For vibration at low frequency, 
ω is small, so UNL is small.  It means that the giant magnetostrictive sensor is 
approximately linear in measuring vibration in low frequency.

7)	UNL increases with ω.  For vibration at high frequency, UNL is remarkable.  It means 
that the accuracy of the giant magnetostrictive sensor will be exasperated at high 
frequency, which has been proved by many researchers.(14–16)  To reduce the accuracy 
aggravation, the length of the GMM rod should be increased.

	 The experimental results of the giant magnetostrictive sensor system are shown in Fig. 6.  
We can see that eq. (9) can describe the experiment results.  The waveform of the output 
voltage is not smooth owing to the existence of multiple-frequency components.

Fig. 6.	 (Color online) Output voltage curve of giant magnetostrictive sensor.
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4.	 Conclusions

	 In this study, a type of hysteretic nonlinear model of GMMs based on the inverse 
magnetostrictive effect was developed, and the nonlinear dynamic characteristics of a 
giant magnetostrictive sensor were studied.  A Van der Pol nonlinear item was introduced 
to describe the hysteretic phenomena of GMM, and the coupling relationship between 
strain and frequency was determined.  The results of the forecast test show that the GMM 
model can describe well the inverse magnetostrictive effect at different frequencies.  
On the basis of the GMM model, the magneto-mechanical coupled model of a giant 
magnetostrictive sensor was developed, and the relationship between output voltage 
and input excitation force was determined.  The nonlinear dynamic characteristics 
of the giant magnetostrictive sensor were discussed, and the phenomena of accuracy 
aggravation in high frequency and delay of giant magnetostrictive sensor were explained.  
The experimental results show that the model can describe the actual response of the 
giant magnetostrictive sensor.  The new model of the giant magnetostrictive sensor has a 
simple form and is easy to analyze in theory, which is helpful for application in measure 
and control fields. 
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