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 The development of technologies is changing the traditional concept of teaching and learning 
in classrooms. In particular, information technology (IT) courses are rapidly adopting such 
changes as IT education’s purpose is to cultivate students’ capability to develop technologies by 
experiencing them in classrooms. In IT courses, deep learning has been used to improve 
teaching and learning ability through the use of sensing technology and related hardware/
software. In teaching and learning, asynchronous, concurrent, and stochastic events occur 
because teachers and students have their protocols and behaviors in the related activities. 
Therefore, the design and teaching of courses should be based on a discrete event system that 
deals with discrete events. On the basis of this concept, we propose a deep learning model with 
the Petri net method to establish a logical modular system for IT course design and teaching. 
Because Petri nets are useful in simulation and analysis for the system modeling of asynchronous, 
concurrent, and stochastic events, we investigate how to use a Petri net to establish a deep 
learning model to develop and evaluate the curriculum of IT courses. The results of this study 
will contribute to building an efficient IT learning system that comprises sensing technology, 
information transmission, information processing, and feedback, which will require 
collaboration with pedagogical experts in the future.

1. Introduction

 Some academic courses in information technology (IT) require teaching discrete event 
systems (DESs), in which Petri net methods are most widely used.(1,2) Recently, many studies on 
teaching logic, problem-solving ability, and the symbolization of natural languages have become 
important in the development of technologies used in artificial intelligence and natural language 
processing.(3) Morou and Kalospyros emphasized the importance of mathematical reasoning to 
improve the cognition of logic in teaching and learning.(4) Butchart and Handfield(5) argued the 
importance of philosophy, formal logic, and critical thinking even in peer instruction. James(6) 
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suggested adding logical components to improve teaching ability in IT courses.
 A Petri net was first used by Engberg and Winskel(7) in the models of Girard’s intuitionistic 
linear logic. It provided mathematical and graphical models to improve understanding of linear 
logic. The feasibility of Girard’s linear logic was reviewed as a specific language for its 
interpretation in Petri nets.(8) Petri nets have also been used to teach algebraic calculus(9) and the 
relationship between logic and concurrency.(10)

 Since they were proposed, Petri nets have been used in industrial and academic research.(11) 
Petri nets are often used for event-based simulation and analysis in manufacturing system 
modeling that demands the behavior of the system to be rendered in an event or activity. They 
are used for concurrent, distributed, nondeterministic, asynchronous, or stochastic events for 
system analysis and design description. Petri nets are also applied to analyze sensor behavior and 
diagnose sensors in a wireless sensor network.(12,13)

 The graphical presentation of a Petri net(1,11,14) is similar to that of flow charts or networks 
used to convey visual information. A Petri net simultaneously describes the activities or events 
within a system and the changing status of the activities by using a state transition diagram.(14) 

Petri nets are regarded as a useful process definition tool in manufacturing process automation, 
traffic management, process control, and education.(5,15–19) Researchers used Petri nets to 
propose a flight control process model, message sequence charts, a performance analysis 
model,(18) a web service process, and pre-authentication in web service composition.(10,20) Timed 
Petri nets (TPNs) and fuzzy Petri nets are applied to a knowledge structure model for students’ 
personalized optimal learning paths.(5) Kučera et al.(2) also used a Petri net to establish a model 
for learning and teaching microcontrollers.
 On the basis of previous studies, we attempt to improve general teaching ability in IT courses 
by applying the Petri net to a deep learning model.(2) Nowadays, many sensing technologies are 
used in IT education because teaching IT with deep learning or machine learning may enable 
monitoring of students’ learning activities and enable the exact and prompt evaluation of 
learning outcomes. For this, various types of hardware with sensing technologies are required 
for sensing drawings, writing, and algorithms created by students, and their attitude and posture. 
A deep learning model has been used to provide personalized learning for students in courses on 
statistics and AI. Applying deep learning methods to the learning experience requires sensing 
technology to save and deliver information about the learning process and outcomes. Many IT 
courses require students to create flow charts for logic and programs. To evaluate them, it is 
necessary to observe and monitor the learning process of students. The new Petri net model in 
this study provides the basis for developing a deep learning model to develop and effectively 
teach IT courses based on the data collected using sensing technologies.

2. Methods

2.1 Properties of Petri nets

 Petri nets are modeling tools composed of places, transitions, tokens, and directed arcs, as 
shown in Table 1.(11,14,21,22) They have the following characteristics. 
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1) The dynamic behavior of an operating simulation system is expressed through the use of 
Petri net graphics.

2) In addition to graphical expression, Petri nets also provide formal semantics based on 
mathematics.

3) Petri nets enable many behavioral property analyses to verify a Petri net model.
 The significance of individual places representing the state of procedures and resources of a 
system is expressed as circles. Transitions describing the activities and events of the system are 
expressed as line segments or rectangles. Places and transitions are connected by directed arcs to 
represent the causal relationship between the flow orders of place changes and events. Places 
contain at least one non-negative integer; these integers are indicated by black dots that are 
usually presented as tokens (●) as shown in Fig. 1.
 Petri nets are expressed by using a combination of the four symbols and five elements (P, T, F, 
W, M0). The elements are defined as follows.
(1) P = { P1, P2, P3, …, Pm} is a finite set of nodes. 
(2) T = {t1, t 2, t 3, …, tn} is a finite set of transitions.
(3) F ⊆ (P × T) ∪ (T × P), where arc set F describes the link between the place and transition 

and represents the causal relationship between them, (P × T) represents a place-to-transition 
arc, and (T × P) represents a transition-to-place arc.

(4) W : F→{1, 2, 3, …}, where W is a set of weighting functions of tokens on the arc. We use W(p, 
t) to express the weight of the place-to-transition arc and W(t, p) to express the weight of the 
transition-to-place arc.

(5) M0 = {M(P1), M(P2), …, M(Pm)} : P→{0, 1, 2, 3, …} is an initial token, where M(P1) 
represents the number of tokens within place P1.

 After constructing a model by using a Petri net, the basic characteristics of the model must be 
analyzed. 

Table 1
Petri net basic compositional elements.
Elements Symbols Definition
Place ○ Represents usable resources or possible states occurring in system
Transition Represents place-changing event of system or beginning and ending of event
Token ● Represents whether or not a system place exists and usable resource variables
Directed arc Links place to transition, representing their input-output relationship

Fig. 1. Simple Petri net model.
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 The common characteristics of a Petri net model are listed as follows.(9,11,23)

1) Liveness
 If each saved transition within a model is kept in an orderly sequence, tokens from the initial 

distribution M0 can reach any of the distributed situations within the model (M1, M2, …, Mn). 
The liveness of a model means that no complete deadlock occurs within a model. In other 
words, each activity occurs all the time.

2) Boundedness
 Under the distribution of any token within a model, the number of tokens within each place 

must not exceed the K-value limit, which is called “model boundedness”. When K = 1, a 
model has “model safeness”. 

3) Reachability
 Reachability is a fundamental concept in the dynamic properties of a model to show that Mn 

is obtained after a token passes a series of transition firings. The ordered sequence of 
transition firings is expressed as T = {t1, t2, t3, …, tn}.

2.2 Dynamic behavior and analysis of Petri nets

 In a Petri net model, not all input place nodes obtain tokens for a transition. A transition 
requires a condition to move. When there are several transitions with such conditions, various 
places are determined in a model. Regardless of whether firing occurs, a transition can be 
initiated randomly or according to a certain set of rules. Once the transition starts, the tokens of 
all input place nodes move to the output place nodes as shown in Fig. 2. At this point, the model 
proceeds to the next step and continues to infer the input of other places with other triggered 
transitions.(11,24)

 A Petri net is a two-valued logical representation with fast deductive capability to handle 
parallel, real-time, scattering, and uncertain operations. The following is a list of the five basic 
Petri net modules used in this paper.
(1) AND-type module (If (P1 and P2 and … and Pn) Then (Pm))

As shown in Fig. 3, if all the input places P1, …, Pn in transition t obtain tokens, transition t is 
triggered. When transition t occurs, all tokens connected to t are cleared. At the same time, a 
token is sent to output place Pm. At this point, the state of the Petri net module shifts to Pm at 
transition t. Then, the module is regarded as the AND computing operation of a logic gate.

(a) (b)

Fig. 2. Examples of firing and triggered nodes. (a) Transition. (b) Triggering transition.



Sensors and Materials, Vol. 34, No. # (2022) 5

(2) Event-conflict-type module
In the model shown in Fig. 4, P1 is the only node with a non-negative integer. There are input 
place nodes for transitions t1 and t2 that are triggered, but only one node can move. This state 
is called the event conflict-type module, which requires that selections or decisions be made 
on the basis of t1 and t2. In other words, special evaluation functions are added to transitions 
t1 and t2. Then, we can use the provided information to select a transition node for its action.

(3) Concurrent-execution-type module
As shown in Fig. 5, there is only one token in node P1. P1 is the input node for transition t1 
that triggers transition t2. If transition t1 moves, the token at node P1 passes to the nodes of 
the next levels of P2, P3, …, Pn, generating a concurrent event-execution phenomenon.

(4) Buffer-type module (If (Pn) Then (Pm))
As shown in Fig. 6, when input node Pn at transition t obtains a token, t is triggered. If 
transition t moves, the token at node Pn passes to the next level, Pm, which changes the status 
of the module from the original Pn to Pm.

(5) Looping-token-type module
As shown in Fig. 7, when node P1 has only one token, the node is the same for the input at 
transition t1 and the output at transition t2. When t1 is triggered, the token at P1 passes to the 
next level P2. The triggering of t2 generates a transfer effect that creates a looping situation.

Fig. 3. AND-type module. Fig. 4. Event-conflict-type module.

Fig. 5. Concurrent-execution-type module. Fig. 6. Buffer-type module.

Fig. 7. Looping-token-type module.
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2.3 Application of Petri net

 Applying a Petri net to a development process only fulfills the basic requirement of the 
overall work. The purpose of the Petri net model is to understand the characteristics of a system 
using various analytical methods by detecting and verifying problems in the system. There are 
several methods of analysis for a Petri net. 
1) Reachability tree
 A reachability tree establishes a treelike structure in which each node represents the current 

state when the moved place node at the previous level is sufficient to place the node at the 
next level. A reachability tree is used to analyze the boundedness and liveness of a Petri net. 
When the system is too large, the graphic becomes too complex to analyze. Thus, a 
reachability tree is appropriate for small systems. Figure 8 shows an example of a Petri net 
and its reachability tree. The initial marking state M0 is (1, 0, 0, 0), which represents the 
availability of tokens at (P1, P2, P3, P4). The marking is set to 1 if token availability is 
confirmed. Otherwise, it is set to 0. The reachability tree allows a complete display of 
possible transition firing sequences and the marking distribution of the system.

2) Matrix equation
Equation (1) is used to infer the behavior of a Petri net. First, a system matrix is defined and 
used to indicate the flow relationship between places and transition s. The mathematical 
equation calculates the state after the transition.
The system matrix is derived from a = a+ − a−, where an+ = W(i, j) is the weight value from 
transition i to output place j and a = W(i, j) is the weight value from input place j to transition 
i. The matrix equation is

 Mi = Mi−1 + an*u1, (1)

where K = 1, 2, …, n, Mk pertains to the Kth state matrix with m × 1 columns, aij is the 
transition matrix of the system, and uk indicates the Kth trigger matrix.(3,17) For the Petri net 
shown in Fig. 8(a), the corresponding system matrix is as follows.

(a) (b)

Fig. 8. Simple example of Petri net and its reachability tree. (a) Petri net. (b) Reachability tree
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Here, aij represents the input matrix and aij
+ represents the output matrix of the system. Table 

2 shows the matrices when t2 moves. When t2 is triggered, we obtain matrices with negative 
values according to Eq. (1). Because negative values in the matrices are unreasonable, the 
use of Eq. (2) is preferable.

2.3 Types of Petri nets 

 Events, conditional situations, processing synchronization, decision processing, and looping 
patterns can be described using Petri nets. Various Petri nets with different purposes exist, such 
as colored Petri nets, timed Petri nets, and hierarchy Petri nets. 
(1) Colored Petri net (CPN)(20)

In a conventional Petri net, all tokens have the same value. In workflow applications, the 
tokens indicate different resources such as documents, programs, or participants. A CPN is 
thus used to mark the resources.

(2) Timed Petri net (TPN)(23)

To describe temporal aspects including performance evaluation and dynamic system 
scheduling, the concept of time must be introduced in the Petri net. Thus, a TPN was 
proposed for describing tasks involving time. A TPN has two different time delays: a 
residence time delay and a trigger time delay. In the residence time delay, each token must 
stop at each place for a certain time before it is triggered. A token for a stopping time that 
exceeds the delay time is defined as the liveness token. The liveness token is output to a 
transition. After a transition moves, its liveness token is sealed. The sealed token moves to 
another transition after a certain delay time. This is defined as the trigger time delay.

(3) Hierarchy Petri net (HPN)(10,16) 
A Petri net for a large-scale process could produce complicated results. To obtain a simpler 
result, an HPN is required to render complex processes. It uses a hierarchical approach to 
reduce the complexity by having a modular workflow. The HPN reiterates the existing 
workflow to effectively avoid difficulties in the existing workflow.

Table 2
Adaption matrix of Petri net.
I P1 P2 P3 P4

aij
−t1 1 0 0 0

t2 0 1 0 0
t3 0 1 0 0
O P1 P2 P3 P4

aij
+t1 0 1 0 0

t2 1 0 0 0
t3 0 0 1 1
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3. Results and Discussion

 We use the modular construction of a Petri net for the operational flow of the development 
process with four basic components of the Petri net: places, transitions, tokens, and directed arcs. 
The development process is displayed using a Petri net diagram. The transition process in the 
Petri net includes the steps of notation, initial state, sequential operation, forking, joining, 
branch, selection, and loop. 
 A process diagram includes rectangular boxes for programs and rhomboidal boxes for 
decision-making procedures, which are shown as places. For an operating process to proceed to 
the next level, an action (a transition) is necessary. In a Petri net, the opening of a new case is 
defined as a token. A token is moved with the aim of completing the operating procedure at a 
certain level. Directed arcs represent the relationship between operating procedures and actions.
 Figure 9 shows an ordinary workflow. Many programs are executed sequentially without 
branching or parallel behavior by following the operating sequence of working procedures A, B, 
and C. Figure 10 illustrates the sequential operation of the process flow using a Petri net.
 Figure 11 presents Petri nets that display forking in the flow. When a token at P1 moves at t1, 
P1 and P2 generate their tokens at the same time to express their parallel behaviors in the logic 
program. Figures 11(a) and 11(b) show the decision-making branch forming a loop in the flow as 
expressed by the Petri net. Transition t1 continuously moves until the condition for leaving the 
loop is satisfied; only then does t1 stop firing. Figures 11(c) and 11(d) show the joining of the 
flow in the Petri net. Only P1 and P2 at t1 show synchronous behavior in the logic programming. 
They also display the selections or event conflicts in the flow process. In this study, the operating 
procedure is set as shown in Fig. 11(d). They are further distinguished and discriminated as 
shown in Fig. 11(a). Figure 11(e) represents the conversion by the Petri net modules and the 
triggering of t1 and t2. However, only one transition can be triggered. This process is regarded as 
an event-conflict-type module, which must choose between t1 and t2.
 The Petri net module used in this study is presented in Table 3. On the basis of the transition 
rules for the flow process of the Petri net, the previously adopted transition from a new 
development flow process to a Petri net module is shown in Fig. 12.

Fig. 9. (Color online) Flow of sequential operation. Fig. 10. (Color online) Flow of separation and import.
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Fig. 11. (Color online) Petri nets representing the flow for the decision-making loop and selection.

Table 3
(Color online) Flow diagrams of five basic modules in Petri net.
Flow diagram Petri net module Petri net diagram Description of application 

A

C

B Buffer-type module

After P1 is complete, operating program P2 can 
be executed only through the action of a trigger 
firing at t1. This method is used to complete all the 
operating procedures.

A B

C

AND-type module P1 and P2 are completed concurrently before t1 can 
be triggered to move.

A

B C

Event-conflict-type 
module

This module addresses event conflict during 
problem points occurring in operating procedures 
or during selection or decision-making 
requirements.

A

B C

Concurrent-execution-
type module

Some operating procedures share the same type of 
scope and must be executed concurrently.

A

B

C

Loop-token-type 
module

When an operating procedure executes an 
erroneous judgment, a loop is formed until the 
error is resolved, allowing the repeating operation 
to be stopped.
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Fig. 12. (Color online) Petri net module for the flow of product development.

 The hierarchy Petri nets method is used in this study to show the subsystems in C2 (research 
and design phase), C3 (lab pilot run phase), C4 (engineering pilot run phase), and C5 (production 
pilot run phase). In this way, the entire flow process for the product development model becomes 
clear and understandable. The module place and transition are explained in detail in Table 4.
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Table 4
Representation of place and transition in module Pn in flow process of new product development. 

Place representation
Node Explanation Node Explanation
Pc0 C0 envisioning phase Pc1 C1 planning phase

Pc2 Determine specifications Pc21
Circuit design and initial circuit diagram 
completed

Pc22 Mechanical general drawing completed Pc23
Procurement based on preliminary material 
table for material cost estimation

Pc24
Review design feasibility during design review 
meeting Pc3 Research and design (RD)

Pc31 Completion of formal circuit Pc32 Completion of mechanical detail drawing
Pc33 Establish formal material table Pc34 Prototyping
Pc35 Sample testing Pc36 Send to customer testing

Pc37 Open local planning and response (LPR) 
meeting Pc4 Verification of all sample components

Pc41 Extended producer responsibility (EPR) Pc42 EPR testing

Pc5 Pedagogy and professional responsibility (PPR) 
preparation Pc51 Preparation of standard operating procedures 

and scheduling
Pc52 Manufacturing Pc53 PPR testing
Pc6 C6 mass production

Transition representation
Node Explanation Node  Explanation

t1
Organizer (project manager) starts a review 
meeting to identify new product ideas t2

P M - l e d r e v i e w m e e t i n g e x p l a i n s t h e 
specifications and schedule for defining the 
development to various units

t3
Project manager (PM) completes the product 
configuration list t4

Establish a preliminary list of materials and 
prepare sample testing materials

t5
All mater ials should meet customer and 
company requirements regarding harmful 
substances

t6 Re-evaluation of RD design

t7
RD proposes product engineering spec for C3 
stage t8 Define exterior appearance of products and 

verify packaging methods

t9

Ent e r p r i se m a nu fa c t u r i ng i n t e l l ige nce 
(EMI)/completion of security debugging and 
application

t10 Prepare product pilot run material

t11 Send samples to complete product design testing t12 Modify circuit debugging

t13
Product assurance (PA) inspection passing 
requires test report to be completed t14 Reconfirm further changes

t15
Complete the confirmation for the required 
number with the customer t16 Quality assurance (QA) completes focus type 

LPR test

t17
Confirm normal or conditioned transition for 
special cases t18 Structure tooling completed and verified

t19

PE and ME coordinate in assisting PD to solve 
production bugs, RD assists in solving problems 
related to design

t20
QA completes detailed EPR test and PE guides 
arrangement of production operation process.

t21 EMI/safety application passed t22 PPR material preparation completed

t23 Manufacturing completed t24

Professional engineers (PE) and manufacturing 
engineers (ME) coordinate to assist PD to 
solve production errors, RD assists in solving 
problems in design

t25
QA completes PPR test and mass production 
(MP)
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4. Conclusions and Recommendations

 When teaching IT courses involving informal and formal logic, teachers must design 
activities to help students learn logical thinking with an established curriculum. This study 
explores how to use a Petri net to construct a logical modular system for IT teachers. A DES 
with a Petri net focuses on graphical description and is used for time Petri nets and hierarchical 
Petri nets. Toward improving IT courses, we investigated the use of a Petri net based on its 
advantages to develop a flow process module for designing IT courses. The new product 
development process is used to verify the feasibility of the module and its implementation. 
 To understand the structural properties of a Petri net and its dynamic behavior for application 
in new product development processes, we combined conventional and high-order Petri nets to 
develop a logical curriculum for IT courses. As a result, we developed a Petri net module in 
which places and transitions are defined. The results of this study are expected to provide a basic 
understanding of how to use a Petri net and DES to develop an educational curriculum, 
especially in IT courses. The module and its elements (places and transitions) are applied to the 
design and teaching of IT courses. The results also provide the basis for curriculum management 
using data collected with various sensing technologies, enabling teachers to monitor and 
evaluate student learning efficiency, thus enhancing the professionalism of teachers and the 
learning ability of students on IT courses. We verified the simplicity, easiness of understanding, 
powerful descriptive ability, and analytical ability of Petri nets for developing a deep learning 
model to meet education needs in collaboration with pedagogical experts.
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