
1Sensors and Materials, Vol. 34, No. # (2022) 1–##
MYU Tokyo

S & M ####

*Corresponding author: e-mail: tujihfu@gmail.com
https://doi.org/10.18494/SAM3826

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Basis for Deep Learning Model of Discrete Event System
for Information Technology Course Design

Haidong Fu,1,2 Yueguang Xie,1 and Jih-Fu Tu3*

1School of Information Science and Technology, Northeast Normal University
No. 2555 Jingyue Ave., Changchun City, Jilin Province 130117, China

2Academic Affairs Office, Changchun University
No. 6543, Weixing Rd., Chaoyang Dist., Changchun City, Jilin 130022, China

3Department of Electrical Engineering, Lunghwa University of Science and Technology
No. 300, Sec. 1, Wanshou Rd., Guishan District, Taoyuan City 333326, Taiwan

(Received December 30, 2021; accepted April 6 2022; online published April 21, 2022)

Keywords: core literacy, metaphysical, discrete event system, information technology teachers, teaching ability

 The development of technologies is changing the traditional concept of teaching and learning
in classrooms. In particular, information technology (IT) courses are rapidly adopting such
changes as IT education’s purpose is to cultivate students’ capability to develop technologies by
experiencing them in classrooms. In IT courses, deep learning has been used to improve
teaching and learning ability through the use of sensing technology and related hardware/
software. In teaching and learning, asynchronous, concurrent, and stochastic events occur
because teachers and students have their protocols and behaviors in the related activities.
Therefore, the design and teaching of courses should be based on a discrete event system that
deals with discrete events. On the basis of this concept, we propose a deep learning model with
the Petri net method to establish a logical modular system for IT course design and teaching.
Because Petri nets are useful in simulation and analysis for the system modeling of asynchronous,
concurrent, and stochastic events, we investigate how to use a Petri net to establish a deep
learning model to develop and evaluate the curriculum of IT courses. The results of this study
will contribute to building an efficient IT learning system that comprises sensing technology,
information transmission, information processing, and feedback, which will require
collaboration with pedagogical experts in the future.

1. Introduction

 Some academic courses in information technology (IT) require teaching discrete event
systems (DESs), in which Petri net methods are most widely used.(1,2) Recently, many studies on
teaching logic, problem-solving ability, and the symbolization of natural languages have become
important in the development of technologies used in artificial intelligence and natural language
processing.(3) Morou and Kalospyros emphasized the importance of mathematical reasoning to
improve the cognition of logic in teaching and learning.(4) Butchart and Handfield(5) argued the
importance of philosophy, formal logic, and critical thinking even in peer instruction. James(6)

https://doi.org/10.18494/SAM3826
https://myukk.org/

2 Sensors and Materials, Vol. 34, No. # (2022)

suggested adding logical components to improve teaching ability in IT courses.
 A Petri net was first used by Engberg and Winskel(7) in the models of Girard’s intuitionistic
linear logic. It provided mathematical and graphical models to improve understanding of linear
logic. The feasibility of Girard’s linear logic was reviewed as a specific language for its
interpretation in Petri nets.(8) Petri nets have also been used to teach algebraic calculus(9) and the
relationship between logic and concurrency.(10)

 Since they were proposed, Petri nets have been used in industrial and academic research.(11)
Petri nets are often used for event-based simulation and analysis in manufacturing system
modeling that demands the behavior of the system to be rendered in an event or activity. They
are used for concurrent, distributed, nondeterministic, asynchronous, or stochastic events for
system analysis and design description. Petri nets are also applied to analyze sensor behavior and
diagnose sensors in a wireless sensor network.(12,13)

 The graphical presentation of a Petri net(1,11,14) is similar to that of flow charts or networks
used to convey visual information. A Petri net simultaneously describes the activities or events
within a system and the changing status of the activities by using a state transition diagram.(14)

Petri nets are regarded as a useful process definition tool in manufacturing process automation,
traffic management, process control, and education.(5,15–19) Researchers used Petri nets to
propose a flight control process model, message sequence charts, a performance analysis
model,(18) a web service process, and pre-authentication in web service composition.(10,20) Timed
Petri nets (TPNs) and fuzzy Petri nets are applied to a knowledge structure model for students’
personalized optimal learning paths.(5) Kučera et al.(2) also used a Petri net to establish a model
for learning and teaching microcontrollers.
 On the basis of previous studies, we attempt to improve general teaching ability in IT courses
by applying the Petri net to a deep learning model.(2) Nowadays, many sensing technologies are
used in IT education because teaching IT with deep learning or machine learning may enable
monitoring of students’ learning activities and enable the exact and prompt evaluation of
learning outcomes. For this, various types of hardware with sensing technologies are required
for sensing drawings, writing, and algorithms created by students, and their attitude and posture.
A deep learning model has been used to provide personalized learning for students in courses on
statistics and AI. Applying deep learning methods to the learning experience requires sensing
technology to save and deliver information about the learning process and outcomes. Many IT
courses require students to create flow charts for logic and programs. To evaluate them, it is
necessary to observe and monitor the learning process of students. The new Petri net model in
this study provides the basis for developing a deep learning model to develop and effectively
teach IT courses based on the data collected using sensing technologies.

2. Methods

2.1 Properties of Petri nets

 Petri nets are modeling tools composed of places, transitions, tokens, and directed arcs, as
shown in Table 1.(11,14,21,22) They have the following characteristics.

Sensors and Materials, Vol. 34, No. # (2022) 3

1) The dynamic behavior of an operating simulation system is expressed through the use of
Petri net graphics.

2) In addition to graphical expression, Petri nets also provide formal semantics based on
mathematics.

3) Petri nets enable many behavioral property analyses to verify a Petri net model.
 The significance of individual places representing the state of procedures and resources of a
system is expressed as circles. Transitions describing the activities and events of the system are
expressed as line segments or rectangles. Places and transitions are connected by directed arcs to
represent the causal relationship between the flow orders of place changes and events. Places
contain at least one non-negative integer; these integers are indicated by black dots that are
usually presented as tokens (●) as shown in Fig. 1.
 Petri nets are expressed by using a combination of the four symbols and five elements (P, T, F,
W, M0). The elements are defined as follows.
(1) P = { P1, P2, P3, …, Pm} is a finite set of nodes.
(2) T = {t1, t 2, t 3, …, tn} is a finite set of transitions.
(3) F ⊆ (P × T) ∪ (T × P), where arc set F describes the link between the place and transition

and represents the causal relationship between them, (P × T) represents a place-to-transition
arc, and (T × P) represents a transition-to-place arc.

(4) W : F→{1, 2, 3, …}, where W is a set of weighting functions of tokens on the arc. We use W(p,
t) to express the weight of the place-to-transition arc and W(t, p) to express the weight of the
transition-to-place arc.

(5) M0 = {M(P1), M(P2), …, M(Pm)} : P→{0, 1, 2, 3, …} is an initial token, where M(P1)
represents the number of tokens within place P1.

 After constructing a model by using a Petri net, the basic characteristics of the model must be
analyzed.

Table 1
Petri net basic compositional elements.
Elements Symbols Definition
Place ○ Represents usable resources or possible states occurring in system
Transition Represents place-changing event of system or beginning and ending of event
Token ● Represents whether or not a system place exists and usable resource variables
Directed arc Links place to transition, representing their input-output relationship

Fig. 1. Simple Petri net model.

4 Sensors and Materials, Vol. 34, No. # (2022)

 The common characteristics of a Petri net model are listed as follows.(9,11,23)

1) Liveness
 If each saved transition within a model is kept in an orderly sequence, tokens from the initial

distribution M0 can reach any of the distributed situations within the model (M1, M2, …, Mn).
The liveness of a model means that no complete deadlock occurs within a model. In other
words, each activity occurs all the time.

2) Boundedness
 Under the distribution of any token within a model, the number of tokens within each place

must not exceed the K-value limit, which is called “model boundedness”. When K = 1, a
model has “model safeness”.

3) Reachability
 Reachability is a fundamental concept in the dynamic properties of a model to show that Mn

is obtained after a token passes a series of transition firings. The ordered sequence of
transition firings is expressed as T = {t1, t2, t3, …, tn}.

2.2 Dynamic behavior and analysis of Petri nets

 In a Petri net model, not all input place nodes obtain tokens for a transition. A transition
requires a condition to move. When there are several transitions with such conditions, various
places are determined in a model. Regardless of whether firing occurs, a transition can be
initiated randomly or according to a certain set of rules. Once the transition starts, the tokens of
all input place nodes move to the output place nodes as shown in Fig. 2. At this point, the model
proceeds to the next step and continues to infer the input of other places with other triggered
transitions.(11,24)

 A Petri net is a two-valued logical representation with fast deductive capability to handle
parallel, real-time, scattering, and uncertain operations. The following is a list of the five basic
Petri net modules used in this paper.
(1) AND-type module (If (P1 and P2 and … and Pn) Then (Pm))

As shown in Fig. 3, if all the input places P1, …, Pn in transition t obtain tokens, transition t is
triggered. When transition t occurs, all tokens connected to t are cleared. At the same time, a
token is sent to output place Pm. At this point, the state of the Petri net module shifts to Pm at
transition t. Then, the module is regarded as the AND computing operation of a logic gate.

(a) (b)

Fig. 2. Examples of firing and triggered nodes. (a) Transition. (b) Triggering transition.

Sensors and Materials, Vol. 34, No. # (2022) 5

(2) Event-conflict-type module
In the model shown in Fig. 4, P1 is the only node with a non-negative integer. There are input
place nodes for transitions t1 and t2 that are triggered, but only one node can move. This state
is called the event conflict-type module, which requires that selections or decisions be made
on the basis of t1 and t2. In other words, special evaluation functions are added to transitions
t1 and t2. Then, we can use the provided information to select a transition node for its action.

(3) Concurrent-execution-type module
As shown in Fig. 5, there is only one token in node P1. P1 is the input node for transition t1
that triggers transition t2. If transition t1 moves, the token at node P1 passes to the nodes of
the next levels of P2, P3, …, Pn, generating a concurrent event-execution phenomenon.

(4) Buffer-type module (If (Pn) Then (Pm))
As shown in Fig. 6, when input node Pn at transition t obtains a token, t is triggered. If
transition t moves, the token at node Pn passes to the next level, Pm, which changes the status
of the module from the original Pn to Pm.

(5) Looping-token-type module
As shown in Fig. 7, when node P1 has only one token, the node is the same for the input at
transition t1 and the output at transition t2. When t1 is triggered, the token at P1 passes to the
next level P2. The triggering of t2 generates a transfer effect that creates a looping situation.

Fig. 3. AND-type module. Fig. 4. Event-conflict-type module.

Fig. 5. Concurrent-execution-type module. Fig. 6. Buffer-type module.

Fig. 7. Looping-token-type module.

6 Sensors and Materials, Vol. 34, No. # (2022)

2.3 Application of Petri net

 Applying a Petri net to a development process only fulfills the basic requirement of the
overall work. The purpose of the Petri net model is to understand the characteristics of a system
using various analytical methods by detecting and verifying problems in the system. There are
several methods of analysis for a Petri net.
1) Reachability tree
 A reachability tree establishes a treelike structure in which each node represents the current

state when the moved place node at the previous level is sufficient to place the node at the
next level. A reachability tree is used to analyze the boundedness and liveness of a Petri net.
When the system is too large, the graphic becomes too complex to analyze. Thus, a
reachability tree is appropriate for small systems. Figure 8 shows an example of a Petri net
and its reachability tree. The initial marking state M0 is (1, 0, 0, 0), which represents the
availability of tokens at (P1, P2, P3, P4). The marking is set to 1 if token availability is
confirmed. Otherwise, it is set to 0. The reachability tree allows a complete display of
possible transition firing sequences and the marking distribution of the system.

2) Matrix equation
Equation (1) is used to infer the behavior of a Petri net. First, a system matrix is defined and
used to indicate the flow relationship between places and transition s. The mathematical
equation calculates the state after the transition.
The system matrix is derived from a = a+ − a−, where an+ = W(i, j) is the weight value from
transition i to output place j and a = W(i, j) is the weight value from input place j to transition
i. The matrix equation is

 Mi = Mi−1 + an*u1, (1)

where K = 1, 2, …, n, Mk pertains to the Kth state matrix with m × 1 columns, aij is the
transition matrix of the system, and uk indicates the Kth trigger matrix.(3,17) For the Petri net
shown in Fig. 8(a), the corresponding system matrix is as follows.

(a) (b)

Fig. 8. Simple example of Petri net and its reachability tree. (a) Petri net. (b) Reachability tree

Sensors and Materials, Vol. 34, No. # (2022) 7

0 1 0 1 0 0 1 1 0
1 0 0 0 1 1 1 1 1
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1

j j jq q q+ −

−
 − − = − = − =

 (2)

Here, aij represents the input matrix and aij
+ represents the output matrix of the system. Table

2 shows the matrices when t2 moves. When t2 is triggered, we obtain matrices with negative
values according to Eq. (1). Because negative values in the matrices are unreasonable, the
use of Eq. (2) is preferable.

2.3 Types of Petri nets

 Events, conditional situations, processing synchronization, decision processing, and looping
patterns can be described using Petri nets. Various Petri nets with different purposes exist, such
as colored Petri nets, timed Petri nets, and hierarchy Petri nets.
(1) Colored Petri net (CPN)(20)

In a conventional Petri net, all tokens have the same value. In workflow applications, the
tokens indicate different resources such as documents, programs, or participants. A CPN is
thus used to mark the resources.

(2) Timed Petri net (TPN)(23)

To describe temporal aspects including performance evaluation and dynamic system
scheduling, the concept of time must be introduced in the Petri net. Thus, a TPN was
proposed for describing tasks involving time. A TPN has two different time delays: a
residence time delay and a trigger time delay. In the residence time delay, each token must
stop at each place for a certain time before it is triggered. A token for a stopping time that
exceeds the delay time is defined as the liveness token. The liveness token is output to a
transition. After a transition moves, its liveness token is sealed. The sealed token moves to
another transition after a certain delay time. This is defined as the trigger time delay.

(3) Hierarchy Petri net (HPN)(10,16)
A Petri net for a large-scale process could produce complicated results. To obtain a simpler
result, an HPN is required to render complex processes. It uses a hierarchical approach to
reduce the complexity by having a modular workflow. The HPN reiterates the existing
workflow to effectively avoid difficulties in the existing workflow.

Table 2
Adaption matrix of Petri net.
I P1 P2 P3 P4

aij
−t1 1 0 0 0

t2 0 1 0 0
t3 0 1 0 0
O P1 P2 P3 P4

aij
+t1 0 1 0 0

t2 1 0 0 0
t3 0 0 1 1

8 Sensors and Materials, Vol. 34, No. # (2022)

3. Results and Discussion

 We use the modular construction of a Petri net for the operational flow of the development
process with four basic components of the Petri net: places, transitions, tokens, and directed arcs.
The development process is displayed using a Petri net diagram. The transition process in the
Petri net includes the steps of notation, initial state, sequential operation, forking, joining,
branch, selection, and loop.
 A process diagram includes rectangular boxes for programs and rhomboidal boxes for
decision-making procedures, which are shown as places. For an operating process to proceed to
the next level, an action (a transition) is necessary. In a Petri net, the opening of a new case is
defined as a token. A token is moved with the aim of completing the operating procedure at a
certain level. Directed arcs represent the relationship between operating procedures and actions.
 Figure 9 shows an ordinary workflow. Many programs are executed sequentially without
branching or parallel behavior by following the operating sequence of working procedures A, B,
and C. Figure 10 illustrates the sequential operation of the process flow using a Petri net.
 Figure 11 presents Petri nets that display forking in the flow. When a token at P1 moves at t1,
P1 and P2 generate their tokens at the same time to express their parallel behaviors in the logic
program. Figures 11(a) and 11(b) show the decision-making branch forming a loop in the flow as
expressed by the Petri net. Transition t1 continuously moves until the condition for leaving the
loop is satisfied; only then does t1 stop firing. Figures 11(c) and 11(d) show the joining of the
flow in the Petri net. Only P1 and P2 at t1 show synchronous behavior in the logic programming.
They also display the selections or event conflicts in the flow process. In this study, the operating
procedure is set as shown in Fig. 11(d). They are further distinguished and discriminated as
shown in Fig. 11(a). Figure 11(e) represents the conversion by the Petri net modules and the
triggering of t1 and t2. However, only one transition can be triggered. This process is regarded as
an event-conflict-type module, which must choose between t1 and t2.
 The Petri net module used in this study is presented in Table 3. On the basis of the transition
rules for the flow process of the Petri net, the previously adopted transition from a new
development flow process to a Petri net module is shown in Fig. 12.

Fig. 9. (Color online) Flow of sequential operation. Fig. 10. (Color online) Flow of separation and import.

Sensors and Materials, Vol. 34, No. # (2022) 9

Fig. 11. (Color online) Petri nets representing the flow for the decision-making loop and selection.

Table 3
(Color online) Flow diagrams of five basic modules in Petri net.
Flow diagram Petri net module Petri net diagram Description of application

A

C

B Buffer-type module

After P1 is complete, operating program P2 can
be executed only through the action of a trigger
firing at t1. This method is used to complete all the
operating procedures.

A B

C

AND-type module P1 and P2 are completed concurrently before t1 can
be triggered to move.

A

B C

Event-conflict-type
module

This module addresses event conflict during
problem points occurring in operating procedures
or during selection or decision-making
requirements.

A

B C

Concurrent-execution-
type module

Some operating procedures share the same type of
scope and must be executed concurrently.

A

B

C

Loop-token-type
module

When an operating procedure executes an
erroneous judgment, a loop is formed until the
error is resolved, allowing the repeating operation
to be stopped.

10 Sensors and Materials, Vol. 34, No. # (2022)

Fig. 12. (Color online) Petri net module for the flow of product development.

 The hierarchy Petri nets method is used in this study to show the subsystems in C2 (research
and design phase), C3 (lab pilot run phase), C4 (engineering pilot run phase), and C5 (production
pilot run phase). In this way, the entire flow process for the product development model becomes
clear and understandable. The module place and transition are explained in detail in Table 4.

Sensors and Materials, Vol. 34, No. # (2022) 11

Table 4
Representation of place and transition in module Pn in flow process of new product development.

Place representation
Node Explanation Node Explanation
Pc0 C0 envisioning phase Pc1 C1 planning phase

Pc2 Determine specifications Pc21
Circuit design and initial circuit diagram
completed

Pc22 Mechanical general drawing completed Pc23
Procurement based on preliminary material
table for material cost estimation

Pc24
Review design feasibility during design review
meeting Pc3 Research and design (RD)

Pc31 Completion of formal circuit Pc32 Completion of mechanical detail drawing
Pc33 Establish formal material table Pc34 Prototyping
Pc35 Sample testing Pc36 Send to customer testing

Pc37 Open local planning and response (LPR)
meeting Pc4 Verification of all sample components

Pc41 Extended producer responsibility (EPR) Pc42 EPR testing

Pc5 Pedagogy and professional responsibility (PPR)
preparation Pc51 Preparation of standard operating procedures

and scheduling
Pc52 Manufacturing Pc53 PPR testing
Pc6 C6 mass production

Transition representation
Node Explanation Node Explanation

t1
Organizer (project manager) starts a review
meeting to identify new product ideas t2

P M - l e d r e v i e w m e e t i n g e x p l a i n s t h e
specifications and schedule for defining the
development to various units

t3
Project manager (PM) completes the product
configuration list t4

Establish a preliminary list of materials and
prepare sample testing materials

t5
All mater ials should meet customer and
company requirements regarding harmful
substances

t6 Re-evaluation of RD design

t7
RD proposes product engineering spec for C3
stage t8 Define exterior appearance of products and

verify packaging methods

t9

Ent e r p r i se m a nu fa c t u r i ng i n t e l l ige nce
(EMI)/completion of security debugging and
application

t10 Prepare product pilot run material

t11 Send samples to complete product design testing t12 Modify circuit debugging

t13
Product assurance (PA) inspection passing
requires test report to be completed t14 Reconfirm further changes

t15
Complete the confirmation for the required
number with the customer t16 Quality assurance (QA) completes focus type

LPR test

t17
Confirm normal or conditioned transition for
special cases t18 Structure tooling completed and verified

t19

PE and ME coordinate in assisting PD to solve
production bugs, RD assists in solving problems
related to design

t20
QA completes detailed EPR test and PE guides
arrangement of production operation process.

t21 EMI/safety application passed t22 PPR material preparation completed

t23 Manufacturing completed t24

Professional engineers (PE) and manufacturing
engineers (ME) coordinate to assist PD to
solve production errors, RD assists in solving
problems in design

t25
QA completes PPR test and mass production
(MP)

12 Sensors and Materials, Vol. 34, No. # (2022)

4. Conclusions and Recommendations

 When teaching IT courses involving informal and formal logic, teachers must design
activities to help students learn logical thinking with an established curriculum. This study
explores how to use a Petri net to construct a logical modular system for IT teachers. A DES
with a Petri net focuses on graphical description and is used for time Petri nets and hierarchical
Petri nets. Toward improving IT courses, we investigated the use of a Petri net based on its
advantages to develop a flow process module for designing IT courses. The new product
development process is used to verify the feasibility of the module and its implementation.
 To understand the structural properties of a Petri net and its dynamic behavior for application
in new product development processes, we combined conventional and high-order Petri nets to
develop a logical curriculum for IT courses. As a result, we developed a Petri net module in
which places and transitions are defined. The results of this study are expected to provide a basic
understanding of how to use a Petri net and DES to develop an educational curriculum,
especially in IT courses. The module and its elements (places and transitions) are applied to the
design and teaching of IT courses. The results also provide the basis for curriculum management
using data collected with various sensing technologies, enabling teachers to monitor and
evaluate student learning efficiency, thus enhancing the professionalism of teachers and the
learning ability of students on IT courses. We verified the simplicity, easiness of understanding,
powerful descriptive ability, and analytical ability of Petri nets for developing a deep learning
model to meet education needs in collaboration with pedagogical experts.

References

 1 Discrete Event Dynamic Systems: An Overview: https://repository.upenn.edu/cgi/viewcontent.
cgi?article=1380&context=cis_reports (accessed March 2022).

 2 E. Kučera, O. Haffner, P. Drahoš, R. Leskovský, and J. Cigánek: Appl. Sci. 10 (2020) 5027. https://doi.
org/10.3390/app10155027

 3 B. Carrascal: Proc. Int. Congr. Tools for Teaching Logic (TICTTL, 2011) 38–45.
 4 A. Morou and N. Kalospyros: Proc. Congr. European Society for Research in Mathematics Education.

(CERME, 2011) 1–9.
 5 S. Butchart, T. Handfield, and G. Restall: Teach. Philos. 32 (2009) 1. https://doi.org/10.5840/teachphil20093212.
 6 Logic in the Classroom, Four Activities: https://www.plato-philosophy.org/james-davis-logic-in-the-

classroom-four-activities/ (accessed March 2022).
 7 U. H. Engberg and G. Winskel: Brics Rep. Series 1 (2006) 176. https://doi.org/10.1007/3-540-58043-3_20
 8 U. H. Engberg and G. Winskel: Proc. Colloq. Trees in Algebra and Programming (CAAP, 1990) 147–161.
 9 H. H. Dang and B. Möller: Acta Inform. 52 (2015) 109. https://doi.org/10.1007/s00236-015-0216-3
 10 R. Hamadi and B. Benatallah: Proc. 2003 Agile Development Conf. (ADC, 2003) 20–31.
 11 S. Babaie, A. Khosrohosseini, and A. Khadem-Zadeh: J. Syst. Archit. 59 (2013) 582. https://doi.org/10.1016/j.

sysarc.2013.06.004
 12 J. Li, Z. Zhu, and X. Cheng: Complexity 2018 (2018) 1. https://doi.org/10.1155/2018/8261549
 13 Kommunikation mit Automaten: http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/ (accessed

March 2022).
 14 A. Bobbio: Proc. System Reliability Assessment (Springer, 1990) 103–143.
 15 P. Bouvier, H. Garavel, and H. P. León: Petri Nets 2020 (2020) 3. https://dblp.org/rec/conf/apn/BouvierGL20.

htm
 16 M. Kucharik and Z. Balogh: Proc. Recent Developments in Intelligent Computing, Communication and

Devices (ICCD, 2017) 1115–1124.
 17 I. Grobelna and A. Karatkevich: Electronics 10 (2021) 2305. https://doi.org/10.3390/electronics10182305

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1380&context=cis_reports
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1380&context=cis_reports
https://doi.org/10.3390/app10155027
https://doi.org/10.3390/app10155027
https://doi.org/10.5840/teachphil20093212
https://www.plato-philosophy.org/james-davis-logic-in-the-classroom-four-activities/
https://www.plato-philosophy.org/james-davis-logic-in-the-classroom-four-activities/
https://doi.org/10.1007/3-540-58043-3_20
https://doi.org/10.1007/s00236-015-0216-3
https://doi.org/10.1016/j.sysarc.2013.06.004
https://doi.org/10.1016/j.sysarc.2013.06.004
https://doi.org/10.1155/2018/8261549
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://dblp.org/rec/conf/apn/BouvierGL20.htm
https://dblp.org/rec/conf/apn/BouvierGL20.htm
http://dx.doi.org/10.3390/electronics10182305

Sensors and Materials, Vol. 34, No. # (2022) 13

 18 A. Sadiq, F. Ahmad, S. A. Khan, and J. C. Valverde: Neural. Comput. Appl. 25 (2014) 1099. https://doi.
org/10.1007/s00521-014-1590-4

 19 K. L. Lo, H. S. Ng, and J. Trecat: IET Gener. Transm. Distrib. 144 (1997) 231. https://doi.org/10.1049/ip-
gtd:19971060

 20 X. Yi and K. J. Kochut: Proc. 2004 IEEE Int. Conf. Web Services (IEEE, 2004) 756. https://doi.org/10.1109/
ICWS.2004.1314810

 21 K. Jensen: Proc. Int. Workshop on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS, 1997) 203–208.

 22 R. Hamadi and B. Benatallah: Proc. 14th Australian Database Conf. (ADC, 2003) 191–200.
 23 W. M. Zuberek: Microelectron. Reliab. 31 (1991) 627. https://doi.org/10.1016/0026-2714(91)90007-T
 24 J. Dai, G. Su, Y. Sun, S. Ye, P. Liao, YS. Yi: Proc. 2018 9th Int. Conf. E-Education, E-Business, E-Management

and E-Learning (IC4E, 2018) 1–6.

About the Authors

 Haidong Fu received his B.S. degree from Northeast Normal University,
China, in 2004 and his M.Ed. from Northeast Normal University in 2006.
Since 2018, he has been working as an associate professor at Changchun
University, China, and in 2020, he enrolled as a Ph.D. candidate at Northeast
Normal University. His research interests include education information, IT
education, and teacher performance development. (fuhd.ccu@163.com)

 Yueguang Xie received her B.S. and Ph.D. degrees from Northeast Normal
University, China, in 1982 and 2007, respectively. Since 2002, she has been
working as a professor at Northeast Normal University. Her research is related
to IT education, information learning resources, high school technical
curriculum, and education information in rural areas. (xieyg@nenu.edu.cn)

 Jih-Fu Tu received his B.S. and M.S. degrees from Kaohsiung Normal
University and Taiwan Normal University, Taiwan, in 1983 and 1989,
respectively. He received his Ph.D. degree in science engineering from Preston
University, USA, in 2003. From 1990 to 2020, he was a professor at the
Electronic Engineering Department at St. John’s University, US. Since 2021,
he has been a professor at the Electrical Engineering Department of LungHwa
University of Science and Technology, Taiwan. His research interests are
education technologies, programmable circuit design, and IoT.

 (tujihfu@gmail.com)

https://doi.org/10.1007/s00521-014-1590-4
https://doi.org/10.1007/s00521-014-1590-4
https://doi.org/10.1049/ip-gtd:19971060
https://doi.org/10.1049/ip-gtd:19971060
https://doi.org/10.1109/ICWS.2004.1314810
https://doi.org/10.1109/ICWS.2004.1314810
https://doi.org/10.1016/0026-2714(91)90007-T
mailto:fuhd.ccu@163.com
mailto:xieyg@nenu.edu.cn
mailto:tujihfu@gmail.com

