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 In recent years, a significant amount of study has been conducted on how to control the 
equilibrium of an electrical motorbike robot (EMBot). This is essential because a stable EMBot 
must be controlled by a reliable system. In this study, we explored a number of approaches for 
stabilizing an EMBot by using a control moment gyroscope (CMG). The momentum from a 
flywheel’s rotation at a set speed is employed to counteract gravity and keep the EMBot 
balanced. To measure the roll angle of the EMBot, an inertial sensor is used. From generalized 
coordinate systems, a nonlinear mathematical model of the EMBot is derived using Lagrange’s 
equation. Pole placement (PP) and linear-quadratic regulator (LQR) controllers are utilized to 
test and observe the system’s stability. By determining the appropriate locations of the closed-
loop poles in the PP controller and finding the optimal K-matrix value by selecting closed-loop 
characteristics in the LQR method, the performance of the system in maintaining stability can 
be identified.

1. Introduction

 Single-track vehicles, such as an electrical motorbike robot (EMBot), offer a number of 
benefits, one of which is that they are more convenient to use than multi-track vehicles. On the 
other hand, due to the nonlinear and unstable nature of the system, controlling an EMBot can be 
challenging.(1–3) One of the difficulties is in maintaining vertical stability or balance control 
when an EMBot is both in a static state and moving through the environment.(1–4) Therefore, a 
significant amount of research has been conducted in an attempt to discover a method that will 
stabilize an EMBot. 
 The method chosen to control the vertical stability of an EMBot is highly dependent on the 
EMBot’s movement conditions. When an EMBot is not moving, the external torque affects the 
direction of the wheels and makes it more difficult for the EMBot to remain balanced. This is 
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because when the wheels are not rotating, there is no angular momentum. In general, there are 
three different approaches for controlling the vertical stability of an EMBot, each with benefits 
and drawbacks. The approach of steering control has excellent performance when an EMBot is 
traveling at medium and high speeds but not when it is traveling at low speeds or stationary. This 
approach also has disadvantages, including ground friction and a lack of resistance when the 
EMBot is tilted at a steep angle. To balance the EMBot, the approach of shifting the center of 
mass can also be used.(5,6) However, a disadvantage of this approach is that the torque output 
cannot be very high. The final approach is the use of a control moment gyroscope (CMG).(7–16) 
The large torque that can be generated by a CMG allows it to overcome the need to stabilize the 
EMBot both at rest and at medium and high speeds. The CMG functions by rotating a flywheel 
that serves as a rotor and is mechanically connected to a motorized gimbal. The shift in the 
angular momentum in gaining the torque that results from the tilting of the spinning flywheel by 
the gimbal motor generates a gyroscopic torque effect, which can help the EMBot maintain its 
equilibrium.
 As described in the literature on the application of gyroscopic effects to actively stabilize a 
single-track vehicle, we conducted research on a model-size EMBot by employing the gyroscopic 
torque of a spinning flywheel to maintain the stability of the EMBot when stationary. Two DC 
motors were utilized to rotate the flywheel and the actuator used for twisting the gimbal that 
controlled the roll angle of the EMBot. As a sensor input, an inertial sensor is employed to 
monitor the roll angle of the EMBot. The roll angle data is then fed into a control system to 
generate the motor torque output as a drive actuator for tilting a spinning flywheel. Pole 
placement (PP) and linear-quadratic regulator (LQR) controllers are utilized to test and observe 
the system’s stability. In this paper, we focus on system modeling, simulation, and observing the 
response of the EMBot system by implementing PP and LQR controllers based on real hardware 
parameters employed in maintaining stability. By determining the appropriate locations of the 
closed-loop poles in the PP control system and finding the optimal K-matrix value by selecting 
closed-loop characteristics in the LQR method, we can determine the performance of the system.

2. Dynamic Model of EMBot

2.1 Coordinates, parameters, and assumptions

 Figure 1(a) is an illustration of an EMBot with a gyroscope attached to control its balance, 
and Fig. 1(b) shows a front view of the EMBot coordinate system. The coordinate reference or 
roll angle of the EMBot is denoted by Oh [xh, yh, zh]; the centers of mass of the EMBot, gimbal, 
and flywheel are Oem, Ogim, and Ofly with heights above the ground of hem, hgim, and hfly, 
respectively; and the roll angle of the EMBot is denoted by γ. The coordinate system for the 
gimbal is denoted by Ogc [xgim, ygim, zgim], the coordinate system for the moving EMBot is Xem 
[xem, yem, zem], and the coordinate reference for the gimbal angle is denoted by β.
 When a flywheel spins at a speed of σ, it has angular momentum denoted by l. The direction 
of the angular momentum is based on the rotation direction of the flywheel α. As shown in Fig. 
2(a), the direction of the angular momentum is along the zfly-axis when the flywheel rotates in 
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a clockwise direction. The angular momentum of the flywheel will change when a force or a 
torque is applied to it. We use τ to denote the torque. Then if we apply an external torque along 
the ygim-axis, the direction of the torque τ will be along the yfly-axis perpendicular to both the 
force and the radius. Because the CMG can produce torque in the direction of the xfly-axis, 
the precession torque that is generated by the angular momentum rate of the gimbal β  makes 
it possible for the EMBot to self-stabilize on its own. Tables 1 and 2 respectively show the 
definitions for the EMBot rotation system and the notation for the parameters of the system.

(a) (b)

Fig. 1. (Color online) EMBot with a gyroscope. (a) Definition of coordinate system. (b) Front view of EMBot 
coordinate system.

Fig. 2. (Color online) Gyroscopic effect of spinning flywheel. (a) Flywheel coordinate system. (b) Gimbal 
precession on its axis.

(a) (b)
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 The following assumptions are taken into consideration in Lagrange’s method to obtain a 
close approximation of a mathematical representation: 1. The EMBot has no longitudinal 
velocity caused by the gyroscope torque on the vertical axis. 2. The EMBot has no lateral slip at 
the contact base. 3. The EMBot, gimbal, and flywheel are all point masses at their centers of 
gravity.

2.2 Modeling of EMBot motion with CMG

 The gyroscopic effect is a result of the principle of angular momentum conservation. When 
the flywheel spins, it generates an angular momentum. The angular momentum l is the product 
of the moment of inertia I and the spin velocity σ. In particular, the curve, the axis of rotation, 
and the mass of the flywheel influence the moment of inertia. Thus, the angular momentum l is

 l Iσ= . (1)

 Another important factor is the torque. The angular momentum dl only changes when a 
torque is applied to it. The torque will cause a change in the angular momentum with respect to 
time. The torque τ is the cross product of the distance vector and the force vector applied 
perpendicular to the radius. Thus, the magnitude of the torque τ on the horizontal axis is

 coslτ β β=  . (2)

Table 1
Definitions for EMBot rotation system.
Parameter Symbol Unit
Flywheel spin direction α rad
Gimbal angle β rad
Roll angle γ rad

Table 2
Notation for the parameters.
Parameter Symbol Unit
Flywheel mass moment of inertia Ifly kgm2

Gimbal mass moment of inertia Igim kgm2

EMBot mass moment of inertia Iem kgm2

Flywheel mass & height mfly and hfly kg & m
Gimbal mass & height mgim and hgim kg & m
EMBot mass & height mem and hem kg & m
Flywheel spin velocity σ rad/s
Angular velocity of EMBot ωem rad/s
Angular velocity of gimbal ωgim rad/s
Angular velocity of flywheel ωfly rad/s
Gravitational acceleration g m/s2
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 Figure 1 shows the definition of the coordinate system of the EMBot used to describe the 
system’s motion. The coordinate Xem rotates about the xh-axis of Oh through angle γ. The 
transformation between coordinate Xem and Oh is

 
1 0 0
 0 cos sin  
0 sin cos

emR γ γ
γ γ

 
 =  
 − 

. (3)

 
 The gimbal consists of a frame that holds the flywheel and the gimbal motor, and the frame is 
molded with the main body of the EMBot. Ogc is the center of rotation of the gimbal and Fgim 
rotates about its ygim-axis through angle β, where the transformation is

 
cos 0 sin
 0 1 0  
sin 0 cos

fgimR
β β

β β

− 
 =  
  

. (4)

 The position of the center of mass of the EMBot Oem in the coordinate system Xem is

 [ ]Tem em em emr x y z= . (5)

 
 In Xem, the position of the gimbal joint Ogc is

 T
gc gc gc gcr x y z =   . (6)

 The positions of the gimbal frame’s center of mass of Ogim and Ofly in the Fgim coordinate 
system are, respectively,
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 Therefore, the positions of the EMBot, gimbal, and flywheel centers of mass in Oh are, 
respectively,
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 The angular velocities of the EMBot, gimbal, and flywheel are calculated as
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 The velocities of the EMBot, gimbal, and flywheel are computed as
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 (10)

 From Eqs. (9) and (10), we can derive the kinetic energy of the system as
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 (11)

 The total kinetic energy of the system is

   em gim flyKE KE KE KE= + + , (12)

where Iem is the moment of inertia of the body mass of the EMBot about its tire contact line (xh-
axis), Igim [Igimx, Igimy, Igimz] is the moment of inertia of the body mass of the gimbal about its 
xgim, ygim, and zgim axes, and Ifly [Iflyx, Iflyy, Iflyz] is the moment of inertia of the body mass of the 
flywheel about its xfly, yfly, and zfly axes.
 Potential energy exists in nonmoving objects and is converted to kinetic energy when a force 
such as gravity is applied and the object is set in motion by interacting with another object. The 
potential energies of the EMBot, the gimbal, and the flywheel are described as follows:
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 The total potential energy of the system is

 em gim flyPE PE PE PE= + + . (14)

 To take the entire system as a single entity, we applied the Lagrangian equation to Eqs. (12) 
and (14). The mathematical model of the system is obtained as

 i
i i

d L L Q
dt q q
 ∂ ∂

− = ∂ ∂ 
, (15)

 
where L is the Lagrangian function and L = KE − PE, qi is the generalized coordinate of the 
object, and Qi is the generalized force applied at each rotating joint. Then we obtain the equations 
of motion by solving the Lagrangian equation for qi = γ. The roll angle dynamic of the EMBot is 
thus obtained as
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and for qi = β, the gimbal angle dynamic of the CMG is 
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 Equation (16) shows that the movement of the flywheel strongly affects the stability of the 
vertical position of the EMBot. Also, it can be deduced that as the EMBot’s tilt increases, the 
flywheel is likely to change direction, enabling it to generate more reactive torque. This means 
that stabilization can occur at a greater tilt angle or if there are larger disturbances. Moreover, 
from the viewpoint of control, the system dynamics can be explained by the following nonlinear 
state model:
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3. Description of Model-size EMBot and Linearization

3.1 Description of model-size EMBot robot

 We built a model-size EMBot, as illustrated in Fig. 3, which is currently being utilized to 
evaluate various control strategies. The model is 22.5 cm long, 18 cm wide, and 20 cm high to 
the top of the flywheel motor. Its total weight is 0.319 kg, including the gimbal and the flywheel. 
The body and the gimbal frame are made of acrylic, whereas the flywheel is made of 3D-printed 
plastic with a bolt included as ballast. The flywheel is a cylinder with a radius of 4.5 cm and a 
height of 1.1 cm. Table 3 shows the specifications of the model-size EMBot system. 
 The base of the acrylic material used to structure the model-size EMBot is shaped like a 
bicycle tire, and it is coated with rubber to prevent it from sliding. The diameter of the wheels of 

(a)

(b)

Fig. 3. (Color online) Model-size EMBot and the experimental setup. (a) Experimental setup. (b) Dimensions of 
EMBot.

Table 3
Specifications of model-size EMBot system.
Parameter Value Unit
Iflyx, Iflyy, Iflyz 0.00004472, 0.00004472, 0.000089375 kgm2

Igimx, Igimy, Igimz 0.0001701, 0.0003402, 0.0001701 kgm2

Iem 0.00638 kgm2

hfly 0.135 m
hgim 0.148 m
hem 0.11849 m
mfly 0.055 kg
mgim 0.134 kg
mem 0.13 kg
σ 314.159 rad/s
g 9.806 m/s2
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the EMBot is 5 cm and the distance between the axles is 16.5 cm. To prevent the EMBot from 
tilting by more than 30°, a limiter is placed on each side of the EMBot. To rotate both the 
flywheel and the gimbal frame, two DC motors with fused gear boxes and integrated encoders 
are installed. The inclination of the EMBot is read by an inertial sensor connected to a 
microprocessor for processing. The flywheel, the gimbal motor, and the data processing system 
including the sensor system are powered by their own independent power sources. Other 
electronic components, including the processor and power supply, are located outside the EMBot 
and connected to it with a cable. 

3.2 Model linearization

 Linearization is a technique for calculating linear approximations of a nonlinear system 
function that are valid within a restricted range of values around the operational point. Using the 
Taylor series expansion of the first order, the linear approximation is evaluated to ensure local 
stability and the steady-state condition at the equilibrium point. This aids in the analysis of the 
stability and disturbance rejection properties of a system. After linearizing the movement 
equation around the equilibrium point, the following equation of motion is obtained:
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( ) ( )2 2 2
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 By expanding Eq. (21), the numerical results for a linear model in state-space form are 
obtained as
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 The specifications of the EMBot listed in Table 3 are determined from the model-size EMBot 
hardware system shown in Fig. 3(b). By substituting these values into Eq. (22), a MATLAB 
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simulation of the behavior of the system is performed. An examination of poles and zeros found 
that the uncompensated system has two poles but no zeros. One of the poles is a positive number, 
which means that the pole on the right side of the imaginary axis causes the system to become 
unstable. 

4. Control System Implementation and Analysis

 Since we are attempting to control the position of the EMBot, which should return to the 
vertical position after the inclination, the reference signal we are tracking should be zero. 
Various full-state feedback control methods, mainly the PP and LQR control methods, were 
implemented and analyzed for the control system. The scheme of the PP and LQR control system 
is shown in Fig. 4(b).
 For a classical feedback controller such as a PID controller, when the input  u  and output y  
are known, the objective is to build a feedback control system that changes the output y  to a 
desired value. Then, in the process block section, we compare the actual value of the output 
signal with the reference signal to obtain a new control signal. Then, this new control signal is 
fed as the input signal to control the plant block section with the aim of reducing the error to 
zero. Instead of feeding back the output y for the PP control, we feed back every state variable in 
the state vectors. In this case, we were convinced of the importance of each state value. The state 
values are then multiplied by a matrix comprised a variety of gain values, also known as the gain 
matrix. Then the result is subtracted from the scale of the reference signal. This signal is then 
directly supplied as an input to the system. The controller comprises the entire block of the 
feedback system. 

(a)

(b)

Fig. 4. (Color online) PID vs full-state feedback control scheme. (a) PID controller. (b) PP and LQR controllers.
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 As previously mentioned, using the PP control method, we can compute the appropriate gain 
matrix to ensure system stability. A reference scaling term is also utilized to guarantee sufficient 
steady-state performance. In addition, rather than randomly selecting poles in the PP controller 
method, the LQR method provides a more systematic approach through finding the optimal 
K-matrix value by selecting the closed-loop characteristics. This makes LQR control one of the 
most powerful algorithms for controlling a dynamic system at the lowest possible cost, and it is 
extensively applied in many fields of industry control. 

4.1 PP controller

 The state-space equation of the system represents the multiple n th-order input linear time-
invariant systems as described by

   x Ax Bu= +
, (23)

where Ax describes the dynamics of the system and Bu describes how the system responds to an 
input. In addition, the Ax term describes how energy is stored and transferred in the system. 
Therefore, it is reasonable to assume that the matrix Ax is unique for each controller design. This 
is particularly relevant in terms of system stability, because each feedback controller must 
update matrix A to adapt to the system’s dynamics. The eigenvalues of matrix A are equal to the 
system’s poles, and the location of the poles determines the stability of the linear system. This is 
the crucial aspect of the PP controller. The poles or the eigenvalues of the closed-loop matrix A 
are modified to ensure the stability of the closed-loop system. The closed-loop system is created 
by submitting state variables back through a real constant matrix K:

 ( )x A BK x= − . (24)

 
 As discussed previously, after running the system, one of the eigenvalues appears on the 
positive side of the imaginary axis in the open-loop system, causing the system to become 
unstable. Using the PP controller by moving the unstable pole to the left half-plane will stabilize 
the system. 
 From our closed-loop matrix A, which is (A − BK)x, and our gain matrix K, which is a 1 × 3 
matrix, the following expression can be derived:

 ( ) [ ] [ ]1 2 3

0 1 0
69.98 0 0  0 4.697 1

0 0 0

TA BK x K K K
 
 − = − ⋅ 
  

. (25)

 
 In this case, we choose the eigenvalues [ ]24 6 12 Tλ − −= − . Using these eigenvectors, we 
can solve the eigenvalues of the closed-loop system by finding the characteristic equation of the 
three gain values
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 ( )( )det 0A BK x Iλ− − = , (26)

and we find appropriate values of K1, K2, and K3 as follows: 

 [122.1954 14.1979 24.6913]. K = −  (27)

 Using these three gain values in the path of the system will stabilize the system as shown in 
Fig. 5. Using the root locus method, it is only possible to move the poles along the locus lines by 
adjusting the gain. However, using the PP control system, we have a gain matrix with which the 
poles can be moved anywhere in the complex plane, as shown in Fig. 5. We first choose the 
desired pole location of [−24 −6 −12], for which we obtain the response system at Tr = 0.120 s and 

Fig. 5. (Color online) Response system with PP control. (a) Roll angle response at desired pole position [−24 −6 
−12]. (b) Roll angle response at desired pole position [−24 −6 −12] × 4.

(a)

(b)
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Ts = 0.899 s, and if we attempt to move a large number of eigenvalues extremely far to the left, 
we achieve a rapid reaction, as shown in Fig. 5(b).
 There are some deficiencies in choosing the poles in the PP method, especially for a high-
order system. We wish to retain the poles closest to the imaginary axis, but this causes the 
system to behave as a conventional second-order system, because the poles move more slowly 
and typically govern the system’s response. Attempting to move a large number of eigenvalues 
extremely far to the left of the imaginary axis to achieve a rapid reaction revealed that our 
actuators lack the necessary speed or power to produce the desired response. This is because it 
requires greater actuator torque to move the eigenvalues from their initial position. Lastly, in our 
mathematical model, we communicate back every state, but we are unable to do this in practice. 
To solve this problem, sensors will be added to the system to measure the missing states. In 
contrast, rather than randomly selecting poles in the PP control method, the LQR control method 
is expected to be a more systematic process.

4.2 LQR controller

 The PP and LQR methods have exactly the same physical structure. Also, the key to their 
implementation is the same, but how the K value is chosen is different. Using the PP controller, 
we determined the K value by deciding where we wanted to place the closed-loop poles. 
However, with this method, it is necessary to find the optimal location for the closed-loop poles, 
which is essential for high-order systems or systems with multiple actuators. Thus, with the LQR 
method, we do not choose the locations of the poles. Instead, we find the best K-matrix value by 
choosing the closed-loop characteristics that we consider important. 
 As discussed previously, the linear time-invariant system was expressed in the state-space 
form (Eq. (23)), and the state variable of the feedback control can be found from Eq. (24). Next, 
the quadratic cost function for the system is defined as

 ( ) ,T TJ x Qx u Ru dt= +∫  (28)

 
where Q is a positive definite or positive semi-definite symmetric matrix when used in 
conjunction with R, a symmetric positive definite matrix. Both matrices are weight matrices, 
and each of them should be diagonal. Each element of the weight matrix has an associated value 
that reflects its effect on the performance index J. Here, we adjust Q to penalize the performance 
and adjust R to penalize the amplitude of the actuator.
 From the state-space model system described in Eq. (22), we design a full-state feedback 
control using LQR with the identity matrix as the starting matrix for Q. The first diagonal entry 
corresponds to the EMBot angular error, and the second is related to the angular rate of the 
EMBot. There is also an actuation input for the input rotation torque system. These components 
work together to create the torque command. Therefore, R is a single value. Then the optimal 
feedback is obtained using the LQR command and from the state-space object that represents the 
closed-loop dynamics. Finally, using the designed controller, we can observe the response time 
of the system with an initial tilt position of 0.087 rad or 5°. Figure 6 shows the performance of 
the control system in keeping the EMBot balanced in the vertical position.
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 As shown in Figs. 6(a)–6(d), the system with different Q and R values has different response 
times of Tr = 0.302 s and Ts = 3.602 s, Tr = 0.383 s and Ts = 5.504 s, Tr = 0.161 s and Ts = 1.284 s, 
and Tr = 0.102 s and Ts = 0.844 s, respectively, with zero steady-state error in each case. When 
the control signals are active, they generate a torque that accelerates the EMBot over time; 
therefore, the torque is proportional to the error’s integral. The longer the acceleratation, the 
greater the torque employed. Utilizing less torque and increasing the penalty on R by a factor of 
four results in a slower response. Moreover, by penalizing the angular rate portion of the Q 
matrix and the R value in more aggressive tuning, as respectively shown in Figs. 6(c) and 6(d), 
we obtain a much faster reaction of the EMBot roll response that can meet the requirements of 
our response system. As shown in Fig. 7, for different initial inclinations, we obtain different 
EMBot roll responses. Finally, these optimal values of the LQR controller then can be supplied 
to the embedded processor of the EMBot to maintain the stability.

Fig. 6. (Color online) Response system with LQR control showing roll angle responses for (a) Q = [1 0 0; 0 1 0; 0 0 
1] and R = 1, (b) Q = [1 0 0; 0 1 0; 0 0 1] and R = 4, (c) Q = [10 0 0; 0 0.1 0; 0 0 1] and R = 0.01, and (d) Q = [40 0 0; 0 
0.025 0; 0 0 40] and R = 0.01.

(a) (b)

(d)(c)
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5. Conclusions

 In this study, we designed the posture control stabilization system of the EMBot using a 
CMG. A reduced mechanical model of the EMBot was designed, which included an inertial 
sensor to provide the input data of the EMBot’s roll angle with the necessary components of the 
system. The EMBot system was also modeled, where Lagrange’s equation was used to derive the 
nonlinear mathematical model of the EMBot in a generalized coordinate system. As a control 
system, the PP and LQR control methods were designed to simulate and evaluate the 
performance of the EMBot system. The experimental results showed that both control methods 
have a good response and the ability to return the EMBot to the equilibrium position after it has 
been tilted. However, the proposed LQR controller ensures that the EMBot has less vibration, a 
faster response, and greater robustness than the PP method. This is because the optimal gain 
value was determined by determining the closed-loop characteristic rather than by choosing the 
pole position. The LQR controller designed in this study is expected to be applied to the actual 
EMBot.
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