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	 Video object detection is a key technology for detecting and tracking humans and animals in 
behavior-understanding tasks. Furthermore, detecting small-scale interactors involved in human 
activities is challenging. Exploiting the temporal context relationship is important for continuous 
understanding. Temporal object detection has been the subject of significant attention, but most 
commonly used detection methods fail to fully leverage the abundant temporal information in 
videos. In the paper, we propose a novel approach to detect humans and animals in videos, called 
attentional temporal You Only Look Once (ATYOLO), which exploits the attention mechanism 
and convolutional long short-term memory. We use the proposed attentional module to integrate 
a pyramidal feature hierarchy temporally and design a unique structure that includes a low-level 
temporal unit and a high-level unit for multiscale feature maps. We have developed an innovative 
temporal analysis group with a temporal attention mechanism tailored for background and scale 
suppression. This attentional group integrates attention-aware features over time. Extensive 
comparisons are conducted to evaluate the detection capability of the proposed approach, and its 
superiority has been confirmed. As a result, the developed ATYOLO achieves fast speed and 
overall competitive performance in video detection, including ImageNet Video (VID） and 
Stanford Drone Dataset (SDD).

1.	 Introduction

	 To understand human activities, detection and tracking of human bodies and interacting 
objects are often required, especially in the case of understanding continuous behavior. 
Therefore, video detection technology is crucial, as shown in Fig. 1. Current methods aim to take 
advantage of the time–space relationships in video data. Traditional approaches rely heavily on 
manual design, resulting in low accuracy and limited robustness to noise sources. In recent 
years, deep learning solutions have been developed to overcome these limitations.(1,2) These 
methods can be classified on the basis of temporal information and feature aggregation.
	 Several methods have been proposed for video object detection, some of which only consider  
either local or global temporal information, while others use both. For example, relation 
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distillation networks use multistage reasoning to distill the relation between object proposals in 
videos.(3) Sequence Level Semantics Aggregation (SELSA) clusters and transforms the features 
of proposals extracted on different frames to generate more robust features for detection.(4) The 
object-guided external memory network uses object-guided external memory to store pixel and 
instance-level features for further global aggregation.(5) Memory-enhanced global-local 
aggregation (MEGA) utilizes global and local information for video object detection.(6) It 
integrates global information into local frames and uses a relation module to aggregate features 
of candidate proposals on global frames into that of local frames. Progressive sparse local 
attention (PSLA) establishes correspondence by propagating features in a local region with a 
gradually sparser stride according to the spatial information across frames.(7) Recursive feature 
updating and dense feature transforming based on PSLA were also proposed to model the 
temporal relationship and enhance the features.(8)

	 Video object detection presents a significant challenge owing to the degradation of features 
in video frames caused by camera jitter or fast motion. Applying detection algorithms designed 
for still images to video tasks is not optimal. However, videos contain valuable temporal 
information that can be utilized to detect objects that may appear in multiple frames within a 
specific time. In prior studies, the potential of this temporal information has been explored by 
using post-processing methods such as motion estimation and object tracking to assemble 
detection results from still-image detection on single frames. However, these methods do not 
operate end-to-end, and the weak detection results must be improved. Alternatively, attempts 
have been made to enhance the video detection performance by aggregating features using 
optical flow to model feature movement across frames and propagate temporal features to 
improve feature representation for detection. While this approach has significantly improved 
detection results, the lumping operation used to exploit temporal features must be simplified.
	 Hence, in this paper, we propose a novel flexible object detection method to detect and link 
objects across video frames. We introduce attentional temporal You Only Look Once 
(ATYOLO), which exploits the YOLO v5 architecture and integrates convolutional Long Short-
Term Memory (LSTM) to incorporate temporal information effectively. We also develop a new 
structure, called the multilevel temporal unit, that enables the propagation of visual features 
across scales to enhance object detection accuracy. Furthermore, we address the background and 

Fig. 1.	 (Color online) Detection in human, animal, and interactor understanding tasks. The proposed method can 
detect the baby, lamb, bicycle, and person effectively. (a) Human detection, (b) animal detection, and (c) interactor 
detection.

(a) (b) (c)
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scale suppression challenge in multiscale feature maps by integrating an attention mechanism. 
We design an attentional module that can selectively focus on relevant visual features for object 
detection while suppressing irrelevant background information. The proposed ATYOLO 
significantly advances the field of object detection in videos by achieving high accuracy and 
efficiency in real-time applications. In addition to evaluating ATYOLO on the challenging 
ImageNet VID, we test it on small-sized object data collected using unmanned aerial vehicles 
(UAVs). Through experiments, we demonstrate that ATYOLO outperforms state-of-the-art 
methods in terms of accuracy and speed, making it a valuable tool for various applications, such 
as surveillance and gaming.
	 The work has contributed the following to object detection in videos.
(1)	A novel structure and attentional module for the effective temporal propagation of pyramidal 

feature hierarchy has been proposed. The temporal attention mechanism incorporated in the 
framework has allowed for background and scale suppression. 

(2)	An attentional group with a low-level extractor has been employed to enable object correlation 
learning across frames. This allows for fast linking of detected objects and has improved the 
efficiency of the detector.

(3)	The ATYOLO achieves improved results on ImageNet VID and SDD in terms of detection 
and tracking accuracy. These results demonstrate the effectiveness of improving state-of-the-
art object detection in videos.

2.	 Related Work

2.1	 Detecting humans, animals, and interactors in videos

	 Detection is a computer vision task that involves detecting objects in video data instead of 
conventional object detection in static images. It has played a significant role in developing 
autonomous driving and video surveillance applications. Video object detection is an active area 
of research, with various approaches being developed to address its associated challenges. 
Earlier attempts involved object detection on each image frame, leading to computational 
inefficiency and low accuracy.(9) However, more recent approaches use space and time 
information to reduce redundancy and improve detection efficiency and accuracy. Deep-
learning-based models are more effective than conventional approaches for various computer 
vision, speech processing, and multimodality signal processing tasks.
	 Video object detection has numerous applications, including hand segmentation, human pose 
estimation, instance-level human parsing, and multiple people tracking. These applications draw 
on various approaches, including flow-based, LSTM-based, attention-based, and tracking-based 
methods.(10) Video object detection has significant value in numerous applications and is an 
active area of research. Various approaches have been developed to address the associated 
challenges, and deep-learning-based models are adequate for this task.(11)
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2.2	 Temporal information analysis

	 Recently, researchers have discussed various methods employed for video object detection, 
focusing on utilizing time–space relationships. Traditional methods heavily rely on manual 
design and suffer from low accuracy and lack of robustness to noise sources. The authors thus 
focused on LSTM-based solutions, which use convolutional LSTMs to process sequential data 
and select important information over a long duration. Offline and online LSTM-based solutions 
were discussed, with the former utilizing all frames in the video and the latter only using the 
current and previous frames.(12) A modified version of the convolutional LSTM was used with 
an image-based object detector to achieve good performance in model size and computational 
efficiency.(13) Then an improvement to this method that employs two feature extractors and a 
memory mechanism with a modified convolutional LSTM layer was discussed.(14) Finally, a 
recurrent causal method was proposed for online detection without succeeding frames, in which 
short-term and long-term temporal information is utilized to overcome challenges such as 
occlusion and motion blur.(15)

	 For example, a novel approach was proposed for pixelwise segmentation to locate foreground 
moving objects accurately. LSTM architecture was integrated into the encoder–decoder 
framework to represent the probability of each pixel being a foreground object. The LSTM 
network sequentially processed the input segmented video frames and learned to identify the 
moving objects by assigning weights to the relevant areas. The advantage of LSTM over RNNs 
is its ability to maintain long-term memory, thus ensuring temporal consistency across frame 
sequences. The perceptron network was employed to concentrate on the moving objects and 
consider their motion properties to determine the attention weight.(16) Detecting moving events 
in complex backgrounds is another challenging task in object detection, which Zhu et al. tackled 
by introducing Gaussian noise to simulate complicated backgrounds. Their approach involved 
using Mask R-CNN to localize the objects and VGG16 to extract features, followed by a 
bidirectional LSTM network that learns temporal information from past and future frames.(17) A 
weighted attention method was used to highlight the required features. The forward propagation 
method was used to feed previous frame features to the next node along with the input frame. In 
contrast, the background propagation was performed similarly to preserve the temporal 
information. The detected object output was obtained by averaging the features from both 
directions.(18)

2.3	 Small-scale object detection

	 UAVs equipped with remote sensing equipment are gaining popularity in various fields, 
including security and surveillance, search and rescue, and sports analysis, owing to their high 
mobility, fast deployment, and enormous surveillance scope. UAV photography is a powerful 
supplement to satellite and airborne remote sensing. However, object detection in UAV images 
remains a core problem in computer vision. The small size and ambiguous boundaries of objects 
in UAV images, complex backgrounds, and changing illumination conditions pose significant 
challenges to accurate and efficient detection.
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	 Traditional object detection methods in UAV images rely on hand-crafted features such as 
histogram of oriented gradient features, scale-invariant feature transform features, and Haar-like 
features, which are time-consuming and laborious to achieve the required robustness of feature 
representation. Recent advances in deep-learning-based methods, such as deep belief networks, 
convolutional neural networks (CNNs), generative adversarial networks, and deep transfer 
networks, show great promise.(19) However, these methods are computationally expensive in 
terms of time and network volume and have relatively low accuracy in detecting small objects. 
In addition, context is a vital factor for humans to recognize objects, and empirical studies in 
computer vision have shown that modeling spatial context can significantly improve algorithm 
performance. Therefore, modeling the spatial context can positively impact small object 
detection in UAV images. However, the current object detection methods are still a trade-off 
between speed and accuracy. The challenge of quickly and accurately detecting small objects in 
UAV images remains for real-time applications.

3.	 Method

	 As shown in Fig. 2, with the extended cross stage partial (CSP) darknet 53 as the backbone, 
we build a temporal architecture with four C3 blocks in the neck. The proposed ATYOLO is 
based on forward CNN and RNN, which generate pyramidal features for detection. The head is 
designed to be responsible for detecting the location and category of the object using the feature 
maps extracted from the backbone. In this process, the convolution operations are leveraged to 
predict the object’s information with visual features. Then the multilevel temporal unit enables 

Fig. 2.	 (Color online) Framework of the proposed ATYOLO. The low-level features share an attentional LSTM, 
and high-level features do so in the neck. Next, the hidden states of convolutional LSTMs will be used for multibox 
regression and classification. Eventually, OTA is conducted for identification using the multiscale attention maps.
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the propagation of visual features across time to enhance object detection accuracy. Finally, 
these bounding boxes and the category of objects on those boxes follow the nonmaximum 
suppression (NMS) to generate the final results. As for sequence learning, ATYOLO is equipped 
with multiscale feature-integration structures aimed at effectively producing temporal memory 
by using more helpful information.

3.1	 Temporal correlation learning

	 Furthermore, we integrate the attentional mechanisms using the same two structures and 
integrated temporal features. Specifically, we divide the multiscale feature maps into two groups 
on the basis of their hierarchical relationships, as shown in Fig. 2. The module makes fuller use 
of the learning process since the low-level features (extracted by the first few convolution layers) 
contain more image details. In contrast, the high-level features (features extracted by the last 
layers of convolution) contain more semantic information in the process of visual feature 
extraction by convolutional computation. Consequently, low-level and high-level features need 
to share their respective time units to extract better features. Finally, we assign the two features 
extracted at the neck (shown in blue in Fig. 2) into one group and the next two extracted features 
(shown in green in Fig. 2) into another group; these groups share a one-time unit.
	 Not only that,  even though only one frame of the target detection process is shown in Fig. 1, 
ATYOLO learns from all previous frames and uses the current pyramidal features and all 
previous memories to generate the current hidden state. This is a multilevel time unit, as shown 
in yellow in Fig. 2. In addition, the number of frames that need to be memorized is controlled by 
ATYOLO’s forgetting gate.

3.2	 Attentional module

	 Small target detection with a large-scale background is difficult in the detection task. 
Therefore, convolutional LSTM could be more efficient when dealing with background 
information, especially for multiscale feature maps. For example, if an object occupies too small 
a proportion of the whole image, this results in far fewer features associated with small objects 
than the background, which may cause false detection. In addition, the attention mechanism can 
selectively focus on relevant visual features for object detection while suppressing irrelevant 
background information. For this reason, we propose ATYOLO for background and scale 
suppression, where the temporal attention mechanism selects object-aware features for the 
convolutional LSTM. In turn, the convolutional LSTM provides temporal information to the 
attention mechanism to improve attention accuracy. As a temporal analysis unit, ATYOLO can 
be represented as

	 [ ]( )1,sigmoid ,tt a x ha W −= ∗ 	 (1)

	 [ ]( )1,sigmoid ,it tt i a x hi W b−= ∗ + 	 (2)
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	 [ ]( )1,sigmoid ,ft tft a x hW bf −∗ +=  	 (3)

	 [ ]( )1,sigmoid ,t tt o oa x ho W b−= ∗ + 	 (4)

	 [ ]( )1,sigmoid ,t tt c ca x hc W b−= ∗ + 	 (5)

	 ( ) ( )1 ,t t t tt f s i cs −= +  	 (6)

	 tanh( ),t t th o s= 
	 (7)

where * stands for convolution,   represents the multiplication of single channel mapping with 
each channel in a multichannel feature mapping one by one, and   represents the element-by-
element multiplication. at, it, ft, ot, ct, st, and ht in the above equation represent the attention map, 
input gate, forget gate, output gate, LSTM’S incoming information, memory, and the hidden 
state, respectively.
	 As shown in Fig. 3, ATYOLO is designed with CNN and RNN. The current feature map x 
and previous hidden state ht-1 serve as the input of the attention module. After a three-layer 
convolution, a one-channel attention at containing pixelwise positions for object-aware features 
is generated and will be used to select useful features in ATYOLO. Note that each element of the 
graph takes a value within [0,1] in order to describe the object mass more effectively. For feature 
selection, each channel of the current feature map multiplies this attention map pixel-by-pixel, 
and the attention-aware feature (a • x) can be obtained. The attention-aware feature and the 
previous hidden state are concatenated as the input of the convolutional LSTM. Different from 
the traditional LSTM, gates (i, f, o) and incoming information (c) will be computed by the 
convolution operation. Subsequently, several frames are memorized by the door control, the 
temporal memory(s) is updated, and the current hidden state is generated for regression.

3.3	 Backbone

3.3.1	 YOLO families

	 Object detection is a critical computer vision task, and YOLO is a widely used algorithm 
known for its fast and accurate object detection capabilities. YOLO was first introduced by 
Redmon et al. in 2015.(20) Since then, several subsequent versions of YOLO have been developed, 
including YOLO V2, YOLO V3, YOLO V4, and YOLO V5, along with a few revised limited 
versions like YOLO-LITE.(20–22) In this subsection, we aim to comprehensively compare the five 
main YOLO versions in terms of their conceptual designs and implementations, focusing on 
their primary motivations, feature development, limitations, and relationships. This comparison 
is particularly relevant as YOLO versions continue to evolve, making it essential to understand 
their similarities and differences.
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	 Object detectors typically comprise a backbone network and a head for predicting object 
categories and bounding boxes, with a neck layer in between to aggregate feature maps. The 
backbone network is usually pretrained on the ImageNet dataset, and YOLO V4 has been used in 
extensive experiments on the neck layer. YOLO V1 uses a backbone similar to GoogleNet, with 
24 convolutional layers and two fully connected layers, and was validated on the Pascal visual 
object classes dataset. However, YOLO V1 was not suitable for recognizing small and densely 
packed objects, as it only predicts two bounding boxes per grid in a 7 × 7 grid. YOLO V2 is 
based on V1 and uses the VGG network to create a new backbone network called Darknet-19. In 

Fig. 3.	 (Color online) Architecture of the proposed attentional LSTM. “c” denotes the concatenation; “Chw-x” and 
“Elw-x” represent the channelwise and elementwise multiplications, respectively.
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YOLO V2, anchor boxes were introduced to replace the fully connected layers, which resulted in 
more accurate localization. The input was also resized to 416 × 416 and a 13 × 13 feature map 
with an odd dimension and exactly one center was obtained, making it easier to predict objects 
with their center points falling into that position. YOLO V3 uses Darknet-53 as the backbone 
network, where the residual structure of ResNet was borrowed to deepen the network structure 
while preventing gradient explosion. It also uses tensor concatenation to extract more 
information by concatenating the middle layer of Darknet-53 with a later layer after upsampling. 
As a result, YOLO V3 has more than ten times the number of predicted boxes as YOLO V2, and 
they are performed at different scales, greatly improving detection accuracy, particularly for 
small objects. YOLO V4 amalgamates various improvement methods after V3 and is divided 
into free and discounted packages. The former indicates modules that improve training without 
affecting inference speed, and the latter indicates modules that have little impact on inference 
time but have higher performance returns. For example, the local CSP structure  used in the 
backbone network maintains high inference speed while retaining high accuracy. At the same 
time, YOLO V4 is more suitable for training on a single GPU. YOLO V5 has a similar basic 
structure to YOLO V4 but builds models based on different channel scales, from small to large, 
depending on the model. YOLOX is based on YOLO V3 and YOLO V5 and uses CSPNet, the 
sigmoid-weighted linear unit, and a path aggregation network. YOLO is a milestone algorithm in 
single-stage detection.

3.3.2	 YOLOv5-based backbone

	 YOLO V5 boasts multiple network architectures, making it a highly versatile and lightweight 
option that matches the accuracy of its predecessor, YOLO V4. Despite criticism for being less 
innovative, YOLO V5 has numerous advantages, such as the PyTorch framework, which is user-
friendly and easy to use. Its code is also easy to read and includes various computer vision 
technologies that facilitate learning and reference. One of the most significant advantages of 
YOLO V5 is its simplified training process. A data loader can enhance training data in three 
ways: scaling, color space adjustment, and mosaic enhancement. Mosaic enhancement has been 
beneficial in accurately detecting small objects, a persistent issue in model training. Although 
the naming of YOLO V5 has been controversial, and its implementation is still evolving, it 
currently provides greater flexibility in controlling model size, applying the Hardswish 
activation function, and utilizing data enhancement techniques. In summary, YOLO V5 is a 
promising solution for real-time object detection and offers a convenient platform for further 
research and development in this field.
	 We adopt the YOLO V5 framework for object detection, which comprises three main 
components: the backbone, neck, and prediction layers. This framework is widely used among 
deep learning enthusiasts and offers different versions tailored to various applications. In our 
method, the backbone component aggregates different image granularities and forms image 
features. We employ a CNN with a focus layer to enrich the training dataset and enhance the 
model’s robustness, addressing the problem of repeated gradients in large convolutional network 
structures.
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	 The neck component generates a feature pyramid and transfers image features to the 
prediction layer. We build upon the Mask R-CNN and feature pyramid network frameworks, 
optimizing information dissemination and enhancing the propagation of low-level features. 
Adaptive feature pooling is employed to restore damaged information paths and prevent 
arbitrary allocation.
	 Lastly, the prediction component conducts the final detection by applying an anchor box to 
the output feature map, generating an output vector with category probability, confidence score, 
and a bounding box. The loss function uses Generalized Intersection over Union (GIOU) loss, 
while the confidence loss and category loss employ the binary cross-entropy loss function. This 
configuration enables the YOLO V5 framework to detect and efficiently classify objects in the 
given input images.

3.4	 Training

	 The prediction module performs the final detection in the head. An anchor box is applied to 
the output feature map to generate an output vector with category probability and a bounding 
box. On the anchor, ATYOLO uses cross-grid matching rules to distinguish the positive and 
negative samples of the anchor. The loss function uses GIOU loss, a temporal correlation loss 

tc , and an attention loss at , as shown in

	  ,tc atGIOUα β γ= + +   	 (8)

where α, β, and γ are the tradeoff parameters. Then, we train ATYOLO in three steps. In our 
study, we performed a grid search over the above hyperparameters where the full objective was 
employed for parameter fine-tuning over ten epochs. Guided by prior research,(23) we considered 
numerical ranges for α ∈ {0.5, 1, 1.5}, β ∈ {0.5, 1, 2}, and γ ∈ {0.5, 1, 1.5}. For the final model 
selection, we opted for α = 1, β = 1, and γ = 0.5, which yielded the best results throughout the 
experiments, as assessed by the mean average precision (mAP) metric.
	 GIOU loss: Compared with the intersection over union (IoU), the GIoU focuses on 
overlapping areas and considers other non-overlapping areas, which can better reflect the degree 
of coincidence. The calculation formulas of IoU and GIoU are as follows. 

	 A BIoU
A B

∩=
∪

	 (9)

	
\ ( )C

GIoU IoU
C
A B∩

= − 	 (10)

	 In Eqs. (9) and (10), A represents the area of the prediction box, B represents the area of the 
target box, and C represents the smallest area that includes A and B in a closed shape.
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3.4.1	Attention loss

	 The generation of attention maps is supervised using cross-entropy. At first, we construct the 
ground truth attention map Am, in which elements in the ground truth boxes are equal to 1 and 
others are equal to 0. There are four feature maps for multibox prediction that generate multiscale 
attention maps 0

scpA . Therefore, each 0
scpA . is first unified to the same resolution as the input 

image through bilinear upsampling operation, followed by the generation of 
sc

up
pA . Each 

upsampled attention map can generate a scale-related attention loss with cross-entropy, and we 
add up four scale losses as the final attention loss. Then, at  can be given as

	 ( ) ( ) ( )( )4
1= log 1 log 1 ,

sc sc

up up
at m mp pc A A A Aµ

=
− − − −∑ 	 (11)

where μ averages all elements in a matrix.

3.4.2	Temporal correlation loss

	 Pixel-level variations can greatly affect the detection results, so there are always large 
fluctuations when using static detection methods to detect targets in videos. Therefore, toward 
the temporal consistency of the video, a correlation loss should be developed for sequence 
training. For this purpose, we encourage ATYOLO to produce similar global classification 
results for consecutive frames. We first compute the first k high predicted scores for each class 
after NMS and then sum them to generate a class-distinguished score list denoted as (sl). The 
score list should maintain small fluctuations in consecutive frames. Thus, tc  can be obtained as

	 ( ) 
 1 /  ,len

tc t avet sl sl len
=

= −∑ 	 (12)

where slt is the score list at time step t, slave denotes the mean score list among sl1:t−1, and len 
represents the sequence length. It should be noted that the temporal correlation loss works in a 
self-supervised manner. That is, there is no incoming ground truth label when computing tc .

4.	 Experimental Results and Discussion

4.1	 Datasets

	 ImageNet VID is currently the most extensive dataset for temporal object detection.(24) The 
objective of our task was to detect 30 different classes of targets across consecutive frames, 
including persons, animals, and interactors. The training set contained 4000 videos totaling 
1181113 frames, while the validation set consisted of 555 videos with 176126 frames. To facilitate 
training, we utilized the ImageNet Detection (DET) dataset, consisting of 200 categories, with 
the 30 VID classes being a subset. We trained the YOLO V5 model using both VID and DET 
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datasets but only used data from the 30 VID classes. The large number of frames in the VID 
training set made it difficult to train a network using all frames directly. Furthermore, the data 
for each category were imbalanced, with some videos having over 1000 frames while others had 
only a few. We followed the methods proposed in Ref. 25 to address these challenges. 
Specifically, we sampled up to 2000 images per class from DET and selected 10 frames from 
each VID video to train the YOLO V5 in the first step. We used all of the VID training videos in 
the subsequent two training steps.
	 SDD is a comprehensive dataset that includes images and videos of objects from various 
classes in motion and interacting within a real-world university campus. The dataset consists of 
six classes and eight different scenes. However, because of limitations in the information 
provided by the ortho-image, we concentrate on a subset of the dataset with four scenes, namely, 
the bookstore, hyang, circle, and little scenes. These scenes capture more objects and are more 
suitable for object detection tasks. However, the original dataset suffers from a severe imbalance 
in the distribution of object classes, with some classes being much more abundant than others. 
To mitigate this issue, we divide the six classes into three groups based on the object’s 
appearance and speed of movement: pedestrians, bikers, and cars. This approach enables a more 
balanced representation of the object classes, improving the dataset’s overall utility. The dataset 
comprises 69673 images for training and validation and 53224 for testing. However, SDD 
presents significant challenges for object detection tasks, mainly because of the small size of the 
three types of objects. Specifically, these objects each occupy less than 0.2% of the image size, 
with a significant proportion falling within the 0.1–0.15% size range. These statistics highlight 
the difficulty of accurately detecting and classifying these small objects, making SDD an ideal 
benchmark for evaluating object detection algorithms.
	 Following the previous work, we evaluated the model’s performance using average precision 
(AP).(26) In scientific literature, mAP is defined as the average of AP values calculated for each 
individual category. Since computing the integral can be relatively challenging, an interpolation 
method is introduced to calculate AP. The interpolation formula of mAP is as follows.

	 ( )1 /n n n cc nmAP R R P Num−= − ⋅∑ ∑ 	 (13)

Here, Rn represents the recall values, Pn denotes the interpolated precision values, Numc is the 
number of classes, and c and n represent different interpolation points and classes, respectively.   

4.2	 Experimental setting

	 In this study, we conducted experiments on object detection in videos using an improved 
YOLO-V5-based model trained end-to-end with a stochastic gradient descent. The experiments 
were performed on a system with a GeForce RTX 3080ti GPU and 12 GB of video memory 
running on the Windows 10 operating system. The PyTorch framework was used, and Python 
was chosen as the development language, with the necessary libraries such as CUDA10.0 and 
open source computer vision library installed. 
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	 In the context of model initialization, we employed He initialization for the CNN layers 
preceding the multilevel temporal unit, as well as the attention module. This initialization takes 
into account the properties of the rectified linear unit activation function when setting the 
standard deviation. For the other layers within the AT-LSTM, we utilized Xavier initialization. 
This approach aids in the propagation of information across the temporal sequences, mitigating 
issues related to gradient vanishing or exploding. Furthermore, both the memory state and 
hidden state of the LSTM were initialized as zero vectors.
	 In the process of model training, we conducted fine-tuning of hyperparameters in 
consideration of the training dynamics. To maximize training efficiency, we configured a batch 
size of 8 and initialized the learning rate at 0.0003. Additionally, to mitigate potential 
underfitting issues, we set the weight decay regularization coefficient to 0.0005 and introduced 
two data augmentation techniques: random Hue shift and random saturation adjustment. Given 
the relatively stable performance of the model across different training epochs, we set the 
dynamic factor to 0.8. Finally, on the basis of the convergence behavior of the model, we 
established the training duration at 150 epochs. After completing the training, we saved the 
optimal detection model file and evaluated the performance using the verification dataset.

4.3	 Comparison on ImageNet VID

	 Table 1 shows the performances of the proposed method and other state-of-the-art models on 
the ImageNet VID dataset. The results show that ATYOLO outperforms the existing methods 
when utilizing the YOLO v5 backbone, achieving an outstanding mAP of 81.77%. Moreover, 
when using the attentional component, the proposed model surpasses the baseline models, 
YOLO v5 and temporal single-shot detector (TSSD),(23) by 5.95 and 16.37 points, respectively, in 
terms of mAP. TSSD(23) is the first batch of attempts to integrate attention modules into 
traditional detectors to improve detection accuracy. It is essential to highlight that the attentional 

Table 1
Performances of various methods on ImageNet VID.
Method Backbone mAP
TSSD(23) VGG-16 65.4
DFF(27) ResNet-50 70.3
YOLO v3(28) DarkNet 72.27
FGFA-1(29) ResNet-50 74
FGFA-2(29) ResNet-101 76.3
D&T-1(30) ResNet-50 76.5
RDN(3) ResNet 101 76.7
MEGA(8) ResNet-50 77.3
SELSA(6) ResNet-50 78.4
D&T-2(30) ResNet-101 79.8
PLSA(9) ResNet-101 80
STMN(31) ResNet-101 80.5
YOLO v5 DarkNet 75.82
ATYOLO DarkNet 81.77
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module is designed as an easy-to-integrate component, making it highly adaptable and 
compatible with any video object detection method to improve the performance. Although the 
experimental results demonstrate that incorporating our module into YOLO v5 achieves 
impressive performance gains, integrating our module into more advanced methods will result 
in even more significant improvements and potentially lead to state-of-the-art results. This 
provides a practical reference for future research on the YOLO family.

4.4	 Comparison on SDD

	 Table 2 illustrates the effectiveness of the proposed attentional approach in enhancing the 
performance of the small-scale object detection algorithm for video object detection tasks. The 
approach incurs an increase in mAP, showing an additional 1.83 and 1.24% compared with 
feature fusion and scaling-based single shot detector (FS-SSD) 512 and FS-SSD+ spatial context 
analysis (SCA),(37) respectively, and because it processes the information of the global-local 
frames, it introduces additional motion information, resulting in a significant 2.4% improvement 
in “Biker” (AP) compared with the leading detector (FS-SSD+SCA(37)). This improvement is 
notably better than that achieved by FS-SSD-512-SCA,(37) which showed an increase of 0.49%.
	 Furthermore, the results in Table 2 demonstrate that the proposed algorithm outperforms the 
base algorithm by 1.51, 0.82, and 2.4% in the three challenging objects. This highlights the 
advantage of ATYOLO, which exploits global–local information in the whole processing stage 
and exploits the similarity of temporal information between adjacent frames, particularly for 
detecting small-size objects. Therefore, the proposed ATYOLO holds great potential in 
improving the performance of small-scale video object detection tasks.

4.5	 Qualitative analysis

	 The proposed model demonstrates excellent detection results in real-world scenarios, 
including moving cars and multi-angle aircraft. As network dimensions increase, conventional 
network models naturally reduce their receptive fields, leading to the loss of crucial fine-grained 

Table 2
Performances of various methods on SDD.
Methods Backbone Car Pedestrian Biker mAP
Faster R-CNN(32) VGG-16 58.57 67.08 53.24 59.63
R-FCN(33) ResNet 61.57 67.42 54.92 61.3
DSSD(34) ResNet 62.75 71.69 54.8 63.08
FSSD(35) VGG-16 65.44 71.98 55.14 64.19
SSD 512(36) VGG-16 60.55 67.54 52.89 60.33
SSD 300(36) VGG-16 57.26 66.58 50.89 58.24
YOLO v3(28) DarkNet 61.83 73.52 51.33 62.23
FS-SSD 512(37) VGG-16 66.49 73.08 57.95 65.84
FS-SSD+SCA(37) VGG-16 66.72 74.1 58.44 66.43
YOLO v5 DarkNet 63.78 73.84 55.39 64.34
ATYOLO DarkNet 68.23 74.92 60.84 67.67
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details. Moreover, the temporal correlations between frames gradually diminish as frames 
progress. Hence, traditional network models exhibit noticeable limitations in handling small 
target objects. The introduced model exploits attention mechanisms and long sequence modeling, 
to effectively harness both global and local information. This modeling approach enhances the 
expressive power of objects, particularly in the detection tasks of moving targets and small-sized 
objects. Simultaneously, the attention mechanism assigns greater weight to objects, thus 
overcoming the drawback of information loss. 
	 Despite variations in the scale, perspective, and temporal order of video frames, all objects 
remain within the model’s purview. Quantitative and qualitative results substantiate the crucial 
role played by attention mechanisms and temporal modeling in enhancing the precision of real-
world object detection. These findings underscore the significance of attention mechanisms and 
temporal modeling in improving the accuracy of object detection in practical scenarios.
	 The comparative results of object detection are illustrated in Fig. 4 and indicate that our 
model achieves optimal performance, particularly under challenging conditions. The hidden 
variables incorporating information from previous frames, along with the attention maps they 
contribute to, enable the model to capture heavily occluded objects (tigers) or objects blurred due 
to motion (chickens). The attention maps of the model aid in enhancing the representation of 

Fig. 4.	 (Color online) Qualitative results of multiscale object detection in videos.
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detected objects, coupled with the feature pyramid, allowing the model to effectively detect 
small-scale targets (humans). These findings underscore the critical importance of incorporating 
attention mechanisms to enhance object detection performance.

4.6	 Ablation study

	 First, we aim to investigate how the number of attention blocks affects the performance of the 
scale, temporal, and task-aware attention mechanisms. To accomplish this, we stack various 
numbers of attention blocks and evaluate their impact. 
	 We integrate two attention modules to form low–high feature extraction (ATYOLO) and 
integrate three modules to form low–medium–high feature extraction (ATYOLO-2).
	 The experimental results, as shown in Table 3, indicate that the performance of the detector 
decreases as the number of attention blocks increase. Surprisingly, we achieve the highest 
performance using only two attention blocks. One plausible explanation for the observed 
decrease in performance with an increasing number of attention blocks is overfitting of the 
training data, particularly in the case of ImageNet VID. This dataset has a limited number of 
objects per frame, which may cause the model to memorize the training data instead of 
generalizing it to unseen examples. From the findings, we suggest using two attention blocks to 
achieve the best performance when employing the scale, temporal, and task-aware attention 
mechanisms. These results can be valuable for developing efficient attention-based models for 
various computer vision applications.
	 We carry out experiments to evaluate the performance of ATYOLO on ImageNet VID. The 
results presented in the above subsection demonstrate that ATYOLO, which uses the YOLO v5 
backbone, achieves an mAP of 81.77%. The use of a shallower architecture in ATYOLO makes it 
less computationally complex than deeper architectures while still achieving comparable 
accuracy. As shown in Table 4, the results suggest that the proposed ATYOLO is a promising 
approach for object detection tasks and outperforms existing state-of-the-art methods in terms of 

Table 3
Performance with various numbers of attention blocks.
Method Parameters mAP (%)
YOLO v5 6.9M 75.82
ATYOLO 8.37M 81.77
ATYOLO-2 8.52M 78.62

Table 4
Accuracy and computation costs.
Method Parameters mAP (%) FLOPS
TSSD 4.9M 65.4 8.5B
YOLO v3 58.65M 72.27 115.6B
YOLO v4 60.94M 73.24 117.4B
YOLO v5 6.9M 75.82 12.7B
ATYOLO 8.37M 81.77 14.2B
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accuracy and computational efficiency. ATYOLO has 2.47 M more parameters than YOLO v5 
but mAP is significantly improved by 5.95%.
	 Furthermore, we compared the performance of our proposed detector with those of other 
state-of-the-art detectors across two diverse benchmark datasets, as shown in Fig. 5. 
Impressively, ATYOLO distinguishes itself by achieving a substantial mAP of 81.77% on 
ImageNet VID, outperforming competing models such as YOLO V3, YOLO V4, and YOLO V5 
by an appreciable margin of 5.95 mAP points. This noteworthy boost in detection accuracy is 
primarily attributed to the incorporation of LSTM for temporal modeling and attention 
mechanisms for background suppression and scale normalization. Furthermore, ATYOLO 
maintains its practicality with a real-time processing speed of 42 frames per second, making it 
an excellent choice for real-time applications, including autonomous driving and surveillance. Its 
competitive mAP of 67.67% on SDD underscores its adaptability to varying scenarios. These 
findings collectively emphasize the pivotal role played by LSTM and attention mechanisms in 
enhancing detection precision and solidify ATYOLO’s potential in addressing real-world object 
detection challenges where a balance between accuracy and real-time responsiveness is 
paramount.

4.7	 Discussion

	 In this study, we aimed to address the challenges associated with still-image object detectors 
and video object detection. Specifically, we focused on the degradation in the appearance of 
objects in videos owing to various factors such as motion blur, defocus, occlusion, illumination, 
scale, and spatial variance. In addition, we investigated the problem of object detection in UAV 
images, which is a crucial issue in computer vision with numerous real-world applications. 
	 To overcome these challenges, we proposed a novel approach to effectively leverage temporal 
information across video frames. We disentangled feature representation by learning scale-
aware, temporal-aware, and task-aware features and incorporated them with attention 
mechanisms. This approach allowed us to handle high intraclass similarity and temporal, scale, 
and task variance among video frames more effectively, leading to improved performance in 

Fig. 5.	 (Color online) Accuracy and speed on (a) ImageNet VID and (b) SDD.

(a) (b)
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object detection. The experimental results of using the unified attention head approach 
demonstrated consistent and significant improvements in performance. Overall, this study has 
contributed to developing more efficient and effective methods for object detection in 
challenging environments, including UAV images.

5.	 Conclusions

	 Aiming at detecting humans, animals, and interactors, in this study, we propose a new 
attentional detection method called ATYOLO, which exploits global-local information to 
measure spatiotemporal relations between adjacent frames, boosting behavior understanding. 
The attentional groups ensure that the object shares the same temporal information and combines 
previous frame temporal information and classification confidence to link detection boxes. We 
also utilize the dynamic mean rescore to calculate the classification confidence of the current 
frame. The results of the experiments demonstrate that the attentional framework, which uses 
YOLO V5 as the base detection network, performs better than other detectors and substantially 
improves the accuracy of video object detection without any significant increase in the amount 
of computation. Moreover, ATYOLO balances speed and accuracy, making it ideal for real-life 
applications such as video surveillance. Looking ahead, improving detection accuracy while 
maintaining real-time performance is the future direction of video object detection algorithms. 
In this research, we explored this direction, and we hope our findings will inspire further 
detection studies in this area.
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