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 Predicting mortality in patients with acute decompensated heart failure remains difficult for 
non-specialists. In addition, the influence of various heart failure complications on mortality has 
not been sufficiently confirmed. The purpose of this research is to assess the possibility of 
predicting the mortality risk in patients with acute decompensated heart failure after discharge 
using deep learning based on a registry of Japanese hospitalized patients with high rates of 
comorbid atrial fibrillation, chronic kidney disease, and anemia. We randomly divided data from 
fifteen clinical characteristics in 1,012 hospitalized patients into training and validation datasets. 
Next, we introduced the datasets into a prediction model using an automated-deep learning 
algorithm (Prediction One). Our deep learning-based model demonstrated a high ability to 
predict mortality risk (c-statistics = 0.75, sensitivity = 0.607, and 1 − specificity = 0.192). 
Prediction accuracy can be improved by appropriately incorporating input variables such as the 
brain-type natriuretic peptide level, red blood cell count, left ventricular ejection fraction, 
number of administered medications, length of hospitalization, and Nohria–Stevenson 
classification stage. We demonstrated that our deep learning model based on multiple clinical 
characteristics is useful for predicting the mortality risk in hospitalized patients with heart 
failure. In particular, we showed that our model including brain-type natriuretic peptide is 
effective for predicting the acute decompensated heart failure mortality risk.

1. Introduction

 Heart failure (HF) mortality prediction is important to patients, their healthcare providers, 
healthcare systems, and payers.(1) Predicting the type, stages, and progression of HF helps in 
tailoring medication and selecting interventions effectively and evaluating disease management. 
However, accurately assessing outcomes in patients with HF has proven difficult. The first 
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attempts at providing accurate predictions of the mortality risk in patients with HF (HF mortality 
risk) were based on statistical approaches. The American Heart Association’s (AHA) Get With 
the Guidelines (GWTG) is a program designed to assist hospitals in designing systems of care.(2) 
The HF module of GWTG-HF was launched in 2005, and the risk score scale for in-hospital 
mortality was validated using its data.(3)

 Machine learning and artificial intelligence are being studied as useful clinical tools by the 
scientific community. Machine learning strategies have great potential in HF fields.(4,5) Machine 
learning algorithms such as linear discriminant analysis, random forest, gradient boosting 
classifier, decision tree classifier, support vector machine, and K-nearest neighbor have been 
tried to predict HF mortality risks.(6) Shin et al. showed that machine learning algorithms have 
better discrimination than the conventional statistical models in most studies on predicting the 
risks of readmission and mortality in patients with HF.(7) Focusing on machine learning and 
using eight variables, Adler et al. achieved 0.81 for c-statistics in their mortality risk prediction.(8) 
Deep learning is also being considered for predicting the HF mortality risk.(9) However, Tanna et 
al. mentioned that the potential utility of novel machine learning tools has yet to be determined 
through a systematic literature review of statistical and machine learning approaches.(10) It is 
important to consider the influence of age, HF duration, race/ethnicity, region, complications of 
atrial fibrillation, chronic kidney disease (CKD), and other complications in predicting the HF 
mortality risk.(11)

 Natriuretic peptide, brain-type natriuretic peptide (BNP), and N-terminal prohormone of 
brain natriuretic peptide (NT-proBNP) levels are increased in patients with HF, and these levels 
may be important for prediction.(12) BNP and NT-proBNP are most often used to diagnose HF 
globally.(13) Moderate to high-quality evidence suggests that a 100 pg/mL increase in BNP is 
associated with a 14% increase in the HF mortality risk.(14)

 We previously established the Clue of Risk Stratification in Elderly Patients with Heart 
Failure (CURE-HF) registry from data obtained in a prospective, multicenter, and cohort study 
conducted in Nagano Prefecture, Japan.(15–17) This registry comprises data from Japanese 
hospitalized patients with acute decompensated heart failure (ADHF), who on average are older 
and have higher rates of comorbidities including atrial fibrillation, CKD, and anemia than the 
patients in registries from Europe and the United States. The purpose of this research is to assess 
the potential for predicting ADHF mortality risk after discharge using a deep learning technique 
trained with data from the CURE-HF registry of Japanese hospitalized patients with specific 
clinical characteristics. Additionally, the effects of adding BNP, a typical HF biomarker, is 
focused as an input variable on the basis of input variables used in the GWTG-HF program.

2. Materials and Methods

2.1 Patients

 The CURE-HF registry enrolled 1,036 consecutive patients hospitalized with a primary 
diagnosis of ADHF and discharged after treatment at 13 institutions between July 2014 and 
August 2019.(15–17) This registry is a comprehensive database that aggregates patient medical 
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records collected through clinical practice in hospitals. The diagnosis of ADHF was based on the 
criteria used in the Framingham study.(18) The exclusion criteria were patients aged < 20 years 
and those with acute coronary syndromes. After admission, medical therapy was initiated at the 
attending physician’s discretion at each local site. Baseline clinical data, including demographic 
characteristics, past medical history, laboratory data, and echocardiography findings were 
obtained during a compensated state of ADHF. All-cause deaths were tracked for two years. 
Follow-up data were obtained either from hospital charts and direct contact with the patients or 
referring physicians. To ensure an accurate assessment of clinical events, additional information 
was obtained from visits or telephone conversations with living patients or their family members, 
as well as from medical records obtained from other hospitals, as necessary, between June and 
August 2021. These data were fully anonymized before analysis by the investigators, who were 
blinded to the participants. The study was approved by each participating institutional review 
board or ethics committee. All study participants signed written informed consent forms prior to 
enrollment. This study was conducted in accordance with the Declaration of Helsinki tenets and 
registered in the University Hospital Medical Information Network (UMIN 000024470).

2.2 Variables

 The variables used in the GWTG-HF program were selected as the base variables to establish 
the prediction model for ADHF mortality risk after discharge: age (years), heart rate (beats/min), 
systolic blood pressure (mmHg), blood urea nitrogen level (BUN, mg/dL), sodium (mEq/L), and 
presence of chronic obstructive pulmonary disease (COPD). Furthermore, the following 
variables were incorporated: body mass index (BMI, kg/m2), BNP level (pg/mL), red blood cell 
count (RBC, ×104/µL), estimated glomerular filtration rate (eGFR, mL/min/1.73 m2), diastolic 
blood pressure (mmHg), left ventricular ejection fraction (LVEF, %), number of administered 
medications (NM), length of hospitalization (LOH, days), and Nohria–Stevenson classification 
stage (NS). The Nohria–Stevenson classification stage was assigned by following the guidelines 
of the European Society of Cardiology.(19) Therefore, fifteen clinical characteristics were 
incorporated into the prediction model.

2.3 Data analysis

 Among the patients in the CURE-HF registry, 1012 hospitalized patients had values for the 
six input variables used in GWTG-HF program. The 1012 patients were assigned random 
numbers and their records were divided into two groups: 90% (911) for training dataset and 10% 
(101) for validation dataset in deep learning (Fig. 1). 
 The prediction model for ADHF mortality risk after discharge was developed using an 
automated deep learning algorithm (Prediction One, Sony Network Communications, Tokyo, 
Japan; https://predictionone.sony.biz/).(20,21) Prediction One software employs an ensemble 
learning technique to make predictions using two algorithms: a neural network and a gradient 
boosting tree (Fig. 1). The neural network automatically selects the number of layers for the 
model within the range from 2 to infinity, with the software making the selection. The output 
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weightings (hyperparameters) of the neural networks and the gradient boosting trees are 
automatically optimized. Predictions are calculated using ensemble learning, incorporating the 
weights and the threshold levels for the outputs of the two models.(22) The rationale behind the 
use of Prediction One is that the software automatically performs preprocessing such as missing 
value completion and variable normalization and it does not require hyperparameter tuning.
 The tuning of the model was performed to increase the sensitivity by optimizing it to better 
identify patients with ADHF at mortality risk. Prediction models of ADHF mortality risk after 
discharge were established by deep learning using the training dataset while increasing the 
number of input variables using the contribution rate as an indicator.(23) The model performance 
was assessed by a discrimination test using receiver operating characteristic (ROC) analysis.(24) 
ROC curves were generated to investigate the discriminatory power of clinical characteristics. 
The areas under the curves (AUCs) were calculated to provide an overall summary of the 
detection accuracies of the clinical characteristics. Here, the AUC is empirically classified into 

 

Fig. 1. Patient selection and block diagram of deep learning. The number of patients included in this study comprised
1,012 hospitalized patients, whose records were divided into two groups: 90% (911) for training dataset and 10% (101) 
for validation dataset in deep learning. 
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Fig. 1. (Color online) Patient selection and block diagram of deep learning. The number of patients included in this 
study comprised 1,012 hospitalized patients, whose records were divided into two groups: 90% (911) for training 
dataset and 10% (101) for validation dataset in deep learning.
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three levels: poor when 0.50 ≤ AUC ≤ 0.69, good when 0.70 ≤ AUC ≤ 0.89, and excellent when 
0.90 ≤ AUC ≤ 1. Sensitivity, specificity, and c-statistics were used for model evaluation in the test 
dataset. The weight of each variable was investigated automatically to measure how it 
contributed to the model’s diagnostic accuracy. To compare the usefulness of the prediction 
models, we investigated the c-statistics (AUC) of the AI-based models.

2.4 Statistical analysis

 Statistical analyses were performed with the Statistical Package for the Social Sciences 
(SPSS) version 20.0 (SPSS Inc, Chicago, IL). Unless otherwise stated, all data were expressed as 
mean ± SD. A value of p < 0.05 was taken to represent statistical significance.

3. Results

3.1 Baseline characteristics of patients

 Table 1 shows the fifteen baseline characteristics of the hospitalized patients. The study 
population included the following demographic information: 44.8% of the study population 
consisted of females, 54.4% were aged 80 years or older, and 21.0% had a classification of New 
York Heart Association (NYHA)(25) equal to or greater than three when discharged. Common 
comorbidities included dyslipidemia, diabetes mellitus, hyperuricemia, atrial fibrillation, 
coronary artery disease, cerebrovascular disease, and malignant tumors. The complication 
records included 51.6% of comorbid atrial fibrillation, 39.2% of CKD, and 17.8% of anemia. 
Blood test results at the time of discharge indicated that 76.4% of the study population had CKD 
(eGFR < 60 mL/min/1.73 m2) and 58.3% had anemia (males with Hb < 13 g/dL; females with Hb 
< 12 g/dL). The features of patients in this CURE-HF registry include high rates of comorbid 
atrial fibrillation, CKD, and anemia. Patients in the comorbid atrial fibrillation group were more 
likely to have worse NYHA class of ≥ 3 and to have CKD (eGFRs) at the time of discharge (p < 
0.05, Mann–Whitney test). There was not a strong enough statistical difference to support the 
idea that the severity of HF symptoms (NYHA classes ≥ 3) among patients was related to their 
anemia (Hb) levels at discharge. However, the p-value of 0.054 suggests a potential difference 
that may require a larger sample size to become evident.

3.2 Predicting models of ADHF mortality risk after discharge

 Table 2 summarizes the calculated results of each prediction model using the validation 
dataset classified into the four diagnostic criteria of true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN). For comparison, a conventional statistical analysis was 
conducted with GWTG-HF program data and the results are also shown in Table 2. The 
established prediction models of deep learning are shown as Models 1 to 6. The contribution 
rates of four input variables, namely age, systolic blood pressure, heart rate, and COPD, were 
comparatively high. No significant difference in the sum of TP and TN diagnostic criteria was 
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observed in both the statistical model based on the GWTG-HF and the deep learning Model 1 
with the same input variables. However, by exploring the input of different variables using deep 
learning, a combination of input variables was found on Model 4 that increased the number of 
true negatives and decreased the number of false positives.
 We conducted a ROC analysis using the validation dataset to closely evaluate the performance 
of the prediction models of ADHF mortality risk. As a statistical approach, the sensitivity, 1 − 
specificity, and AUC of the GWTG-HF model using the validation dataset were 0.750, 0.397, and 
0.68, respectively. On the other hand, the optimal combination of input variables was found as 
Model 4 presented an optimal combination of input variables, that is, the specificity improved 
and c-staticsstics reached maximum at 0.75 (Table 3 and Fig. 2). Model 4 was added with the 

Table 1
Baseline characteristics of Japanese hospitalized patients in CURE-HF registry used as the factors in the prediction 
model of mortality.*1

Overall (n = 1012) Dead (n = 222) Alive (n = 790) p-value

Age (years) 81.0
(71.0–87.0)

85.0
(79.0–89.0)

79.0
(69.0–86.0) < 0.01*2

Heart rate (beats/min) 70.0
(60.0–80.0)

69.5
(60.0–81.0)

70.0
(60.0–80.0) 0.64*2

Systolic blood pressure 
(mmHg)

112.0
(100.0–125.0)

108.0
(98.0–120.8)

114.0
(102.0–126.0) < 0.01*2

BUN (mg/dL) 24.5
(18.4–32.9)

28.1
(21.3–39.0)

23.2
(18.0–31.0) < 0.01*2

Sodium (mEq/L) 139.0
(137.0–141.0)

139.0
(136.0–141.0)

139.0
(137.0–141.0) < 0.01*2

COPD 53/1012 20/222 33/790 < 0.01*2

BMI (kg/m2) 21.0
(18.9–23.8)

20.2
(17.9–23.1)

21.3
(19.1–24.0) < 0.01*2

BNP (pg/mL) 291.6
(138.0–531.0)

433.8
(183.0–663.9)

266.0
(130.3–474.1) < 0.01*2

Red blood cell (×104/µL) 401.0
(347.0–458.0)

374.0
(336.0–422.0)

407.0
(353.0–464.0) < 0.01*2

eGFR (mL/min/1.73m2) 46.0
(33.0–59.0)

39.0
(29.1–53.2)

47.3
(34.7–60.0) < 0.01*2

Diastolic blood pressure 
(mmHg)

65.0
(57.0–74.0)

61.0
(55.0–69.0)

66.0
(58.0–74.0) < 0.01*2

LVEF (%) 49.0
(35.0–61.9)

49.1
(33.0–61.4)

49.0
(35.5–62.0) 0.45*2

Number of administered 
medications (n)

1: 695 (69%)
2: 163 (16%)

3 > : 152 (15%)
missing: 2

1: 105 (47%)
2: 44 (20%)

3 > : 72 (32%)
missing: 1

1: 590 (75%)
2: 119 (15%)

3 > : 80 (10%)
missing: 1

—

Length of hospitalization 
(days)

19.0
(13.0–29.0)

20.0
(14.0–33.8)

19.0
(13.0–29.0)

Nohria–Stevenson 
classification (n)

1: 32 (3%) 
2: 767 (76%)

3: 55 (5%)
4: 158 (16%)

1: 4 (2%)
2: 160 (72%)

3: 17 (8%)
4: 41 (18%)

1: 28 (4%)
2: 607 (77%)

3: 38 (5%)
4: 117 (15%)

—

*1 Values are medians (interquartile ranges) or n (%).
*2 Mann–Whitney test was conducted.
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following six input variables to the GWTG-HF program: BNP level, RBC count, LVEF, number 
of administered medications, LOH, and Nohria–Stevenson classification. Additionally, we 
omitted the input variable of sodium level from the GWTG-HF program.
 Figure 3 shows the comparison of contribution rates of the input functions of Models 1 and 4. 
Gradient boosting trees were used to determine the effect of input variables on the prediction 
accuracy, where the contribution rate indicates the degree of contribution to the prediction 
accuracy. For instance, if the contribution rate of a function is 0.1, the prediction accuracy 
improves by 0.1 upon incorporation of the function into the input variables. In generating Model 
4, the following input variables were added to Model 1 in ascending order: number of 
administered medications, BNP level, LVEF, Nohria–Stevenson classification stage, and LOH.

4. Discussion

 The study results supported our working hypothesis that the prediction accuracy of ADHF 
mortality risk improved depending on the levels of the HF biomarker, BNP. The combinational 
assessment using multiple clinical characteristics from more than 1,000 randomized records of 
hospitalized patients showed promise for predicting the ADHF mortality risk. Sartipy et al. 
reported a c-statistic for AUC of 0.74 for predicting the HF mortality risk after discharge from 
the hospital or after a clinical visit in a large cohort of patients using the Kaplan-Meier survival 
time analysis method.(26) In addition, a meta-analysis using the Seattle Heart Failure Model to 
predict death during the following year reported a c-statistic of 0.69.(27) Logistic regression was 
also used to estimate the HF mortality risk with a preserved ejection fraction after three years of 
follow-up, and the c-statistic of the model was 0.72.(28) The AUC c-statistic of 0.75 for predicting 
the ADHF mortality risk after discharge was higher than those of published statistical 

Table 2 
Calculated results of four combinations of each method.

Method Variables TP TN FP FN Correct 
Number

GWTG-HF Age, Heart rate, 
Systolic blood pressure, COPD BUN, Sodium 5 67 6 23 72

Deep learning
Model 1

Age, Heart rate, Systolic blood 
pressure, COPD

BUN, Sodium 1 72 3 27 73
Model 2 LVEF, BUN, Sodium 3 73 0 25 76
Model 3 LVEF, BUN, Sodium, NM 4 71 2 24 75

Model 4 BUN, BNP, RBC, LVEF, NM, 
LOH, NS 5 72 1 23 77

Model 5 BUN, Sodium, BNP, RBC, 
LVEF,  NM, LOH, NS 2 72 1 26 74

Model 6
BNP, RBC, Diastolic blood 
pressure, LVEF, NM, LOH, 

NS
7 68 5 21 75

TP: true positive, TN: true negative, FP: false positive, FN: false negative, RBC: red blood cell, NM: number of 
administered medications, LOH: Length of hospitalization, NS: Nohria–Stevenson classification.



8 Sensors and Materials, Vol. 36, No. # (2024)

Table 3 
Results of ROC analysis of prediction models for HF mortality risk after discharge.
Model Sensitivity 1 − Specificity AUC
1 0.643 0.274 0.70
2 0.714 0.329 0.70
3 0.500 0.178 0.68
4 0.607 0.192 0.75
5 0.607 0.452 0.54
6 0.429 0.192 0.62
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Fig. 2. Ability of deep learning models to predict mortality using multifunctions. 

 Fig. 2. (Color online) Ability of deep learning models to predict mortality using multifunctions.
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approaches. The ROC analysis showed that Model 4 had “good” capability for discriminating 
between cardiac death or alive (Table 3 and Fig. 2). The prediction accuracy could be improved 
by appropriately adding input variables as the RBC count, LVEF, number of administered 
medications, LOH, and Nohria–Stevenson classification stage, which were not typical input 
variables for the prediction model of ADHF mortality risk. By using deep learning, we 
demonstrated that the handling of nonlinear relationships and the ability to integrate large and 
diverse datasets effectively can lead to the discovery of useful medical information buried 
within diagnostics, and can provide objectivity to medical information that physicians intuitively 
focus on.
 Choi et al. used quantitative features derived from echocardiographic images.(29) In addition 
to imaging data, electronic health record (EHR) data are also informative for HF risk 
prediction.(30) Moreover, wearable devices are being developed for the remote acquisition of real-
time data from patients with HF to monitor potential risks.(31) In this research, the hospitalized 
patients were Japanese of higher average age with higher rates of comorbid atrial fibrillation, 
CKD, and anemia. Indeed, the deep learning model selected the following variables associated 
with these comorbidities as input variables: BNP level, which is associated with comorbid atrial 
fibrillation, and the red blood cell count, associated with anemia. Current HF mortality risk 
models do not typically include BNP measures (Seattle HF Model, (32) MAGGIC score, (33) 3C-
HF,(34) and HF Meta-Score(35)). The addition of BNP to risk prediction models demonstrated 
increased discrimination by these multivariable models to predict adverse ADHF outcomes. 
There is a possibility that we have not incorporated an effective input variable. Therefore, this 
finding suggests that developing technology capable of measuring biomarkers frequently may be 
an effective approach to predict adverse ADHF outcomes.
 Among the clinical characteristics of the CURE-HF registry used in this study, age, BUN, 
BNP levels, and LOH were positively correlated with the ADHF mortality risk. By contrast, 
heart rate, systolic blood pressure, red blood cell, and LVEF were negatively correlated with the 
cardiac death risk. Therefore, the prediction accuracy of our model was higher when the input 
variables with a positive correlation were included in Model 4. However, multicollinearity, a 
phenomenon that can occur when running multiple regression models, may influence the 
prediction accuracy when the number of input variables increases.(36,37) In the validation of 
common pitfalls in machine learning, such as data imbalance and overfitting, statistical methods 
such as cross-validation, regularization, and data augmentation are employed.(38–40) However, in 
machine learning using an extremely large number of input variables, verification using these 
methods is not straightforward. This problem occurs regardless of the analysis method, be it a 
statistical or machine learning method, and remains a problem for the future.
 Quantitative evaluation of the association between estimation results and the input variables 
is difficult when using deep learning algorithms that rely only on neural networks. In this 
research, it became possible to visualize the effects of input variables, as shown in Fig. 3, 
because the Prediction One software employs ensemble learning to make predictions using two 
algorithms: a neural network and a gradient boosting tree. A method achieving both accuracy 
and causality identification, such as ensemble learning, might be necessary to effectively 
implement deep learning strategies in medical fields.
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 The limitations inherent to this study require further exploration. Our results should be 
validated in other populations, and the temporal changes in BNP levels according to HF 
progression and prognosis should be examined in future studies.

5. Conclusions

 By analyzing data from over 1000 Japanese hospitalized patients with ADHF and using deep 
learning, we demonstrated that our deep learning model based on multiple clinical 
characteristics, including HF markers, is useful for predicting the ADHF mortality risk after 
discharge. Furthermore, we showed that our model based on multiple clinical characteristics, 
including HF markers such as BNP, is effective for predicting the ADHF mortality risk. 
Therefore, developing wearable devices for the remote acquisition of real-time data from patients 
with ADHF is important to enable the monitoring of potential risks.
 HF mortality risk prediction is critical for the accurate application of specific therapeutic 
approaches, which range from pharmacological to highly invasive mechanical ventricular 
assistance and cardiac transplantation strategies. Deep learning with ensemble learning using a 
neural network and a gradient boosting tree may offer valuable applications in the diagnosis, 
classification, and prediction of cardiovascular disease. Owing to the relatively small number of 
validation datasets, there is a limitation in deep learning research, and our results should be 
validated in other populations.
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