Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 27, Number 5 (2015)
Copyright(C) MYU K.K.
pp. 351-358
S&M1073 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2015.1086
Published: June 8, 2015

Development and Investigation of a Sweetness Sensor for Sugars -Effect of Lipids- [PDF]

Masato Yasuura, Qingyue Shen, Yusuke Tahara, Rui Yatabe and Kiyoshi Toko

(Received November 11, 2014; Accepted December 18, 2014)

Keywords: taste sensor, sugar, sweetness sensor, sucrose, lipid/polymer membrane

Several methods of taste evaluation, such as sensory tests and the use of electronic tongues and a taste-sensing system based on lipid/polymer membranes, have been developed and utilized in the food and pharmaceutical fields. In particular, the taste-sensing system can individually quantify five basic tastes using each type of sensor membrane. However, it is difficult to develop a sweetness sensor, because sweeteners cover a large number of compounds with diverse chemical structures and sizes. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type (neutral, negative and positive) of sweetener. The sweetness sensor for uncharged sweeteners has been commercialized, but the mechanism of the response to sugars has not been clarified. Therefore, we investigated how the sensor responds to sugars in this study. As a result, we confirmed the unnecessity of the aromatic ring and that of the carboxyl group and the basic sensor-rinsing solution including cations, and concluded that both the hydrophobicity and electric charge of the surface of the sensor membrane influence the sweetness response.

Corresponding author: Masato Yasuura


Cite this article
Masato Yasuura, Qingyue Shen, Yusuke Tahara, Rui Yatabe and Kiyoshi Toko, Development and Investigation of a Sweetness Sensor for Sugars -Effect of Lipids-, Sens. Mater., Vol. 27, No. 5, 2015, p. 351-358.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.