Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 30, Number 10(1) (2018)
Copyright(C) MYU K.K.
pp. 2221-2233
S&M1671 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2018.1844
Published: October 12, 2018

Soft-clustering Technique for Fingerprint-based Localization [PDF]

Panarat Cherntanomwong and Pitikhate Sooraksa

(Received December 9, 2017; Accepted May 16, 2018)

Keywords: localization, fingerprint technique, soft clustering, wireless sensor network, ZigBee

In this paper, the soft-clustering algorithm for the fingerprint-based localization technique is proposed. In an indoor environment, the fingerprint-based localization technique is usually employed since it can deal with signal fluctuation. Its basic principle is to find the target location by comparing its signal parameters with a previously recorded database of known-location-signal parameters. Here, the received signal strength indicator (RSSI) provided by the wireless sensor network (WSN) is used as the signal parameter. The high accuracy of location estimation requires a very fine spatial resolution of the database, corresponding to the time consumed for pattern matching. To reduce the calculation time, clustering can be applied because it can reduce the database size by grouping similar data in the same cluster. The accuracy of the algorithm to cluster the target location and fingerprint locations is the main concern. The result shows that the clustering technique used can successfully cluster the target sensing node into an appropriate cluster. This implies that, by using soft clustering with the fingerprint technique, the target location can be estimated faster than by using classical fingerprint techniques since the target location can be estimated within a small set of fingerprints in the cluster, not with all fingerprints in the database.

Corresponding author: Panarat Cherntanomwong


Cite this article
Panarat Cherntanomwong and Pitikhate Sooraksa, Soft-clustering Technique for Fingerprint-based Localization, Sens. Mater., Vol. 30, No. 10, 2018, p. 2221-2233.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Signal Collection, Processing, and System Integration in Automation Applications
Guest editor, Hsiung-Cheng Lin (National Chin-Yi University of Technology)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.