Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 31, Number 6(3) (2019)
Copyright(C) MYU K.K.
pp. 2043-2060
S&M1914 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2019.2253
Published: June 28, 2019

Improved Indoor Localization Based on Received Signal Strength Indicator and General Regression Neural Network [PDF]

Shuqi Xu, Zhuping Wang, Hao Zhang, and Shuzhi Sam Ge

(Received January 6, 2019; Accepted April 15, 2019)

Keywords: received signal strength indicator (RSSI), ZigBee, localization, filter, maximum likelihood estimation (MLE), general regression neural network (GRNN)

Nowadays, indoor positioning is becoming one of the most important issues in smart cities. With the rapid progress of wireless communication and digital electronic technology, wireless sensor networks (WSNs) have been developed and are playing an important role in indoor positioning systems. The received signal strength indicator (RSSI) is adopted by most range-based localization algorithms. However, the positioning system based on the RSSI is vulnerable to environmental interference and the RSS itself is unstable. To tackle this problem, we propose an improved indoor localization based on the RSSI and general regression neural network (GRNN). In the raw data processing module, an improved average filter is proposed to make the raw data stable and reliable. Then, an improved weighted centroid localization algorithm (IWCLA) is proposed to revise the positioning result on the basis of maximum likelihood estimation (MLE). In the view of the complex and changeable indoor environment, an improved GRNN localization algorithm is proposed to achieve better applicability and higher positioning accuracy. The effectiveness of the proposed methods is verified in different cases through simulation and experiment studies.

Corresponding author: Zhuping Wang


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Shuqi Xu, Zhuping Wang, Hao Zhang, and Shuzhi Sam Ge, Improved Indoor Localization Based on Received Signal Strength Indicator and General Regression Neural Network, Sens. Mater., Vol. 31, No. 6, 2019, p. 2043-2060.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.