Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 31, Number 12(1) (2019)
Copyright(C) MYU K.K.
pp. 3947-3958
S&M2061 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2019.2303
Published: December 6, 2019

Mitigation of Runway Incursions by Using a Convolutional Neural Network to Detect and Identify Airport Signs and Markings [PDF]

Zhi-Hao Chen and Jyh-Ching Juang

(Received January 16, 2019; Accepted October 21, 2019)

Keywords: drone, runway incursion, AI, path planning

Runway incursions have resulted in incidents, confusions, and delays in airport operation. With the aim of reducing the risk of runway incursions, in this work, we investigate the use of a machine learning (ML) approach to detect and identify airport signs and markings to enhance operational safety especially in a low-visibility scenario. An artificial intelligence (AI) sensor for detecting the pixels developed and modeled using a convolutional neural network (CNN) is developed. In this design, the neural network outputs the feature vector model after the convolution operation. A filter is used to detect the pixels of the background image of the airport environment. The weight of the feature object is then added with a maximum pool layer after a convolution layer to find the feature map. The CNN is trained to demonstrate its capability in performing object detection and identification. It is expected that the proposed approach can be used to enhance airport operational safety and mitigate the risk of runway incursion.

Corresponding author: Zhi-Hao Chen


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Zhi-Hao Chen and Jyh-Ching Juang, Mitigation of Runway Incursions by Using a Convolutional Neural Network to Detect and Identify Airport Signs and Markings, Sens. Mater., Vol. 31, No. 12, 2019, p. 3947-3958.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.