Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 31, Number 6(2) (2019)
Copyright(C) MYU K.K.
pp. 1939-1955
S&M1909 Review paper
https://doi.org/10.18494/SAM.2019.2313
Published: June 18, 2019

A Review of Proximity Gettering Technology for CMOS Image Sensors Using Hydrocarbon Molecular Ion Implantation [PDF]

Kazunari Kurita, Takeshi Kadono, Ryousuke Okuyama, Satoshi Shigematsu, Ryo Hirose, Ayumi Onaka-Masada, Yoshihiro Koga, and Hidehiko Okuda

(Received January 28, 2019; Accepted April 15, 2019)

Keywords: CMOS image sensors, gettering technique, metallic impurity, hydrocarbon molecular ion implantation, white spot defects, dark current, image lag, dark current spectroscopy

We developed a high-gettering-capability silicon wafer for advanced CMOS image sensors using hydrocarbon molecular ion implantation. We found that this novel silicon wafer has an extremely high gettering capability for metal, oxygen, and hydrogen impurities during the CMOS device fabrication process. We also found that the white spot defect density of a hydrocarbon-molecular-ion-implanted CMOS image sensor was substantially lower than that of a CMOS image sensor without hydrocarbon molecular ion implantation. This indicates that the novel silicon wafer helped improve device performance parameters such as white spot defect density and dark current. We believe that this wafer will be beneficial in the design of silicon wafers for advanced CMOS image sensor fabrication.

Corresponding author: Kazunari Kurita


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Kazunari Kurita, Takeshi Kadono, Ryousuke Okuyama, Satoshi Shigematsu, Ryo Hirose, Ayumi Onaka-Masada, Yoshihiro Koga, and Hidehiko Okuda, A Review of Proximity Gettering Technology for CMOS Image Sensors Using Hydrocarbon Molecular Ion Implantation, Sens. Mater., Vol. 31, No. 6, 2019, p. 1939-1955.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.