Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 33, Number 11(1) (2021)
Copyright(C) MYU K.K.
pp. 3729-3744
S&M2720 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2021.3344
Published: November 17, 2021

Development and Comparative Analysis of Geospatial Feature Automatic Extraction System in Open-source Environment [PDF]

Dong Gook Lee, Ji Ho You, and Hyun Jik Lee

(Received February 24, 2021; Accepted May 14, 2021)

Keywords: open source, geospatial feature extraction system, development, classification accuracy

The aim of this study is to develop a system for geospatial feature extraction from images to be obtained from CAS500-1/2 satellites currently being developed by the Ministry of Land, Infrastructure, and Transport, Republic of Korea. The feasibility of automatic geospatial feature extraction is verified by applying the relative radiometric normalization technique to KOMPSAT-3A satellite images, which are expected to have similar specifications to CAS500 images. Furthermore, the developed system is compared with commercial software to verify its classification accuracy. In this study, two KOMPSAT-3A satellite images were collected and relative radiometric normalization was performed. Identical parameters and threshold values were applied to both the commercial software and the developed system to extract geospatial features by feature class and analyze the classification accuracy using an error matrix. Image segmentation and image classification were performed for grassland, ground, roads, buildings, and water bodies. The results indicated a classification accuracy of 90% or higher, which was set as the accuracy goal. The difference in the classification accuracy of the two systems was less than approximately 1%, implying comparable performances for the two systems. Using the geospatial feature extraction system developed by us, it is expected that basic data will be generated for monitoring national territory such as forests and urban areas.

Corresponding author: Ji Ho You, Hyun Jik Lee


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Dong Gook Lee, Ji Ho You, and Hyun Jik Lee, Development and Comparative Analysis of Geospatial Feature Automatic Extraction System in Open-source Environment, Sens. Mater., Vol. 33, No. 11, 2021, p. 3729-3744.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Novel Sensors, Materials, and Related Technologies on Artificial Intelligence of Things Applications
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on 2D Materials-based Sensors and MEMS/NEMS
Guest editor, Kazuhiro Takahashi (Toyohashi University of Technology)
Call for paper


Special Issue on Innovations in Multimodal Sensing for Intelligent Devices, Systems, and Applications
Guest editor, Jiahui Yu (Research scientist, Zhejiang University), Kairu Li (Professor, Shenyang University of Technology), Yinfeng Fang (Professor, Hangzhou Dianzi University), Chin Wei Hong (Professor, Tokyo Metropolitan University), Zhiqiang Zhang (Professor, University of Leeds)
Call for paper


Special Issue on Signal Collection, Processing, and System Integration in Automation Applications
Guest editor, Hsiung-Cheng Lin (National Chin-Yi University of Technology)
Call for paper


Special Issue on Artificial Intelligence Predication and Application for Energy-saving Smart Manufacturing System
Guest editor, Cheng-Chi Wang (National Sun Yat-sen University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.