Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 34, Number 4(1) (2022)
Copyright(C) MYU K.K.
pp. 1337-1349
S&M2895 Research Paper of Special Issue
https://doi.org/10.18494/SAM3629
Published: April 4, 2022

Understanding the Mechanism of Deep Learning Frameworks in Lesion Detection for Pathological Images with Breast Cancer [PDF]

Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, and Yanhong Tai

(Received September 15, 2021; Accepted January 13, 2022)

Keywords: CADe system, lesion detection, deep features, visual interpretability

With the advances of scanning sensors and deep learning algorithms, computational pathology has drawn much attention in recent years and started to play an important role in the clinical workflow. Computer-aided detection (CADe) systems have been developed to assist pathologists in slide assessment, increasing diagnosis efficiency and reducing misdetections. In this study, we conducted four experiments to demonstrate that the features learned by deep learning models are interpretable from a pathological perspective. In addition, classifiers such as the support vector machine (SVM) and random forests (RF) were used in experiments to replace the fully connected layers and decompose the end-to-end framework, verifying the validity of feature extraction in the convolutional layers. The experimental results reveal that the features learned from the convolutional layers work as morphological descriptors for specific cells or tissues, in agreement with the diagnostic rules in practice. Most of the properties learned by the deep learning models summarized detection rules that agree with those of experienced pathologists. The interpretability of deep features from a clinical viewpoint not only enhances the reliability of AI systems, enabling them to gain acceptance from medical experts, but also facilitates the development of deep learning frameworks for different tasks in pathological analytics.

Corresponding author: Yanhong Tai


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Wei-Wen Hsu, Chung-Hao Chen, Chang Hao, Yu-Ling Hou, Xiang Gao, Yun Shao, Xueli Zhang, Jingjing Wang, Tao He, and Yanhong Tai, Understanding the Mechanism of Deep Learning Frameworks in Lesion Detection for Pathological Images with Breast Cancer, Sens. Mater., Vol. 34, No. 4, 2022, p. 1337-1349.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.