Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 34, Number 5(2) (2022)
Copyright(C) MYU K.K.
pp. 1823-1833
S&M2932 Technical Paper of Special Issue
https://doi.org/10.18494/SAM3764
Published: May 17, 2022

Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices [PDF]

Zhi-Wei Liu, Shen-Li Chen, Jhong-Yi Lai, Hung-Wei Chen, Hsun-Hsiang Chen, and Yi-Mu Lee

(Received December 2, 2021; Accepted April 7, 2022)

Keywords: electrostatic discharge (ESD), holding voltage (Vh), laterally diffused MOSFET (LDMOS), transmission line pulse (TLP), secondary breakdown current (It2), trigger voltage (Vt1), ultrahigh voltage (UHV)

In this paper, we present N-channel laterally diffused MOSFET (nLDMOS) devices for electrostatic discharge (ESD) contact-mode sensors in ultrahigh voltage (UHV) applications. These circular UHV nLDMOS devices have concentric circles of poly-layer 2 (Poly2) with different potential configurations and a discrete high-voltage P-well (HVPW) in the drift region. The Poly2 on the drift region is made of polysilicon to reduce the peak electric field in the drift region, thereby reducing the on-resistance. When the Poly2 was connected to the positive VDD potential, the trigger voltage of the device decreased due to the change in the interface electric field in the drift region; thus, this device more easily triggered conduction than the Poly2 grounded type. We used five radial methods to insert the HVPW into the drift region and evenly distributed it into two, four, eight, 16, and 32 equal partitions. When the Poly2 was grounded and the HVPW layer of the drift region was divided into 32 partitions, it had the highest secondary breakdown current of 3.56 A. This is because the more uniform the distribution of the superjunction (SJ), the higher the ability of the component to discharge the ESD current. Therefore, changing the potential of Poly2 changes the electric field distribution and affects the trigger voltage. Adding an HVPW SJ structure in the drift region will increase the on-resistance, thus improving the discharging current capability.

Corresponding author: Shen-Li Chen


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Zhi-Wei Liu, Shen-Li Chen, Jhong-Yi Lai, Hung-Wei Chen, Hsun-Hsiang Chen, and Yi-Mu Lee, Electrostatic Discharge Sensing of Concentric Circles of Poly2 with Different Potentials and Discrete High-voltage P-well Modulation on Circular Ultrahigh-voltage N-channel Laterally Diffused MOSFET Devices, Sens. Mater., Vol. 34, No. 5, 2022, p. 1823-1833.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.