Young Researcher Paper Award 2021
🥇Winners

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.
pp. 1879-1888
S&M2938 Research Paper of Sepcial Issue

Piezoelectric MEMS Energy Harvester from Airflow at Low Flow Velocities

Kensuke Kanda, Takashi Aiba, and Kazusuke Maenaka

(Received February 16, 2022; Accepted April 19, 2022)

Keywords: energy harvesting, MEMS, PZT, wind energy source, self-oscillation

Similarly to a harmonica reed, a piezoelectric MEMS cantilever is self-excited by an airflow. An airflow-induced self-excited vibration can be utilized as an energy source for energy-harvesting devices. In this study, with the aim of reducing the cut-in flow velocity, which is the lowest flow velocity required for resonant vibration, a thin MEMS structure with an intentionally warped shape was exploited in an energy harvester based on the principle of harmonica reeds. By compensating for the residual stresses of PZT and Pt electrode films, the cantilever warpage of the harvester structure can be controlled. The thin-film nature and the warped PZT/Si laminated MEMS structure enabled energy harvesting from an airflow at low flow velocities. Moreover, the cut-in flow velocity of the airflow-induced MEMS harvesting device was very low (1.2 m/s, one-tenth of that of a conventional device), and an output power of 3.84 μW was obtained at a flow velocity of 3.7 m/s.

Corresponding author: Kensuke Kanda




Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Smart Mechatronics for Energy Harvesting
Guest editor, Daisuke Yamane (Ritsumeikan University)
Call for paper


Special Issue on Sensing and Data Analysis Technologies for Living Environment, Health Care, Production Management, and Engineering/Science Education Applications: Part 2
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Rey-Chue Hwang (I-Shou University), Ja-Hao Chen (Feng Chia University), and Ba-Son Nguyen (Lac Hong University)


Special Issue on 2021 International Virtual Conference of Green Materials Applied in Photoelectric Sensors (2021 ICGMAPS)
Guest editor, Yen-Hsun Su (National Cheng Kung University), Wei-Sheng Chen (National Cheng Kung University), and Chun-Chieh Huang (Cheng Shiu University)
Conference website


Special Issue on Advanced Materials and Sensing Technologies on IoT Applications: Part 4-2
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)


Special Issue on Collection, Processing, and Applications of Measured Sensor Signals
Guest editor, Hsiung-Cheng Lin (National Chin-Yi University of Technology)


Special Issue on Advanced Materials and Sensing Technologies on IoT Applications: Part 4-3
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)


Copyright(C) MYU K.K. All Rights Reserved.