Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 35, Number 2(1) (2023)
Copyright(C) MYU K.K.
pp. 377-389
S&M3174 Research Paper of Special Issue
https://doi.org/10.18494/SAM4280
Published: February 9, 2023

Development and Simulation of Operational Scenarios for Underwater Cable-driven Parallel Robot [PDF]

Katutoshi Kodama, Akihiro Morinaga, and Ikuo Yamamoto

(Received December 12, 2022; Accepted February 1, 2023)

Keywords: cable-driven, parallel robot, underwater robot, operation scenario, feedback control

A cable-driven parallel robot (CDPR) is a mechanism that controls the position and attitude of an object using multiple cables. We propose an underwater cable-driven parallel robot (UCDPR), which is a CDPR composed of multiple surface robots. A UCDPR is a type of mobile cable-driven parallel robot (MCDPR) that is composed of multiple mobile robots and is an underwater application of MCDPR, which has been used only on land and in the air. We describe the details of the operational scenario of the UCDPR, from landing on the water to executing a task. We also simulated numerically the stabilization phase required after landing on water and the trajectory tracking control phase required for underwater exploration and other tasks. In this numerical simulation, we used a high-gain feedback controller as the trajectory tracking controller to add robustness to the control system. As a result, a trajectory tracking control was realized within a tolerance tracking error range of 10−2 m underwater in the presence of a maximum current velocity of 0.8 m/s (≅ 1.5 knots), which is a control requirement.

Corresponding author: Katutoshi Kodama


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Katutoshi Kodama, Akihiro Morinaga, and Ikuo Yamamoto, Development and Simulation of Operational Scenarios for Underwater Cable-driven Parallel Robot, Sens. Mater., Vol. 35, No. 2, 2023, p. 377-389.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.