Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 32, Number 2(2) (2020)
Copyright(C) MYU K.K.
pp. 651-673
S&M2128 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2020.2615
Published: February 20, 2020

Strike Activity Detection and Recognition Using Inertial Measurement Unit towards Kendo Skill Improvement Support System [PDF]

Yohei Torigoe, Yugo Nakamura, Manato Fujimoto, Yutaka Arakawa, and Keiichi Yasumoto

(Received September 11, 2019; Accepted January 9, 2020)

Keywords: activity recognition, wearable computing, inertial measurement unit, sports support, kendo

In the field of sports, there are increasing opportunities to use inertial measurement units (IMUs) to enhance the training process and improve the performance of athletes. We focus on kendo, a traditional martial art using shinai (bamboo swords) in Japan, and propose methods for detecting and recognizing strike activities using IMUs towards realizing a kendo skill improvement support system. We used a sensor data set of strike activities obtained from 14 participants (seven kendo-experienced and seven inexperienced persons). We attached four IMUs to the participants’ right wrist, waist, and shinai (tsuba and saki-gawa). First, to detect the strike activity, we calculated the dynamic time warping (DTW) distance between the training data and the time series data, and detected the strike activity sections. The proposed method detected strike activities with a high accuracy of 95.0%. Next, to recognize the strike activity, we recognized five types (Center-Men, Right-Men, Left-Men, Dō, and Kote). In the person-dependent (PD) case, we achieved an accuracy of 89.5% using data of the right wrist. In the person-independent (PI) case, we achieved an accuracy of 54.9% using IMUs attached to the three positions. These results clarified the points to be improved in the proposed method to realize the support system.

Corresponding author: Yohei Torigoe


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Yohei Torigoe, Yugo Nakamura, Manato Fujimoto, Yutaka Arakawa, and Keiichi Yasumoto, Strike Activity Detection and Recognition Using Inertial Measurement Unit towards Kendo Skill Improvement Support System, Sens. Mater., Vol. 32, No. 2, 2020, p. 651-673.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Signal Collection, Processing, and System Integration in Automation Applications
Guest editor, Hsiung-Cheng Lin (National Chin-Yi University of Technology)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.