Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 36, Number 11(2) (2024)
Copyright(C) MYU K.K.
pp. 4815-4833
S&M3833 Research Paper of Special Issue
https://doi.org/10.18494/SAM5205
Published: November 19, 2024

Tool Wear Classification Based on Support Vector Machine and Deep Learning Models [PDF]

Yung-Hsiang Hung, Mei-Ling Huang, Wen-Pai Wang, and Hsiao-Dan Hsieh

(Received June 25, 2024; Accepted October 21, 2024)

Keywords: tool wear, machine vision, image classification, support vector machine, convolutional neural network

Tool status is crucial for maintaining workpiece quality during machine processing. Tool wear, an inevitable occurrence, can degrade the workpiece surface and even cause damage if it becomes severe. In extreme cases, it can also shorten the machine tool service life. Therefore, accurately assessing tool wear to avoid unnecessary production costs is essential. We present a wear classification model using machine vision to analyze tool images. The model categorizes wear images on the basis of predefined wear levels to assess tool life. The research involves capturing images of the tool from three angles using a digital microscope, followed by image preprocessing. Wear measurement is performed using three methods: gray-scale value, gray-level co-occurrence matrix, and area detection. The K-means clustering technique is then applied to group the wear data from these images, and the final wear classification is determined by analyzing the results of the three methods. Additionally, we compare the recognition accuracies of two models: support vector machine (SVM) and convolutional neural network (CNN). The experimental results indicate that, within the same tool image sample space, the CNN model achieves an accuracy of more than 93% in all three directions, whereas the accuracy of the SVM model, affected by the number of samples, has a maximum of only 89.8%.

Corresponding author: Wen-Pai Wang


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Yung-Hsiang Hung, Mei-Ling Huang, Wen-Pai Wang, and Hsiao-Dan Hsieh, Tool Wear Classification Based on Support Vector Machine and Deep Learning Models, Sens. Mater., Vol. 36, No. 11, 2024, p. 4815-4833.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.