Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 29, Number 6(2) (2017)
Copyright(C) MYU K.K.
pp. 795-803
S&M1368 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2017.1558
Published: June 21, 2017

Fluorine-Incorporated Amorphous Carbon Coating Inhibits Adhesion of Blood Cells to Biomaterials [PDF]

Ayumi Horikawa, Shunto Maegawa, Terumitsu Hasebe, Tomohiro Matsumoto, Minoru Tanaka, Koki Takahashi, and Tetsuya Suzuki

(Received December 12, 2016; Accepted May 18, 2017)

Keywords: amorphous carbon, fluorine doping, biomaterial, antithrombogenic, anti-inflammation

When the surfaces of biomaterials come into contact with human blood, the contact can induce adhesion and activation of platelets and leukocytes following protein adhesion, and these complex reactions cause responses in the body including biomaterial-associated thrombosis and inflammation. Fluorine-incorporated amorphous carbon (a-C:H:F) is widely known as an antithrombogenic thin film and is regarded as a promising coating that can solve the problem of blood-contacting medical devices. However, the anti-inflammatory properties of a-C:H:F have not yet been elucidated. Polymorphonuclear neutrophil leukocytes (neutrophils) play important roles in thrombosis and inflammation, and platelets that adhere to and become activated on biomaterial, which are also key factors of thrombus formation, promote adhesion of neutrophils in an inflammatory process. In this study, to evaluate the antithrombogenic and anti-inflammatory properties of a-C:H:F coating, we analyzed the platelets that had adhered to and become activated on, as well as neutrophils that had adhered to, a-C:H:F-coated SUS316L, which is a conventional material used for medical devices. The a-C:H:F-coated SUS316L suppressed platelet adhesion and activation and neutrophil adhesion to a greater extent than uncoated SUS316L. These results showed that a-C:H:F coating is a suitable and biocompatible coating for implanted devices because it controls the initial thrombotic and inflammatory reactions of biomaterials.

Corresponding author: Terumitsu Hasebe


Cite this article
Ayumi Horikawa, Shunto Maegawa, Terumitsu Hasebe, Tomohiro Matsumoto, Minoru Tanaka, Koki Takahashi, and Tetsuya Suzuki, Fluorine-Incorporated Amorphous Carbon Coating Inhibits Adhesion of Blood Cells to Biomaterials, Sens. Mater., Vol. 29, No. 6, 2017, p. 795-803.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.