Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 30, Number 11(2) (2018)
Copyright(C) MYU K.K.
pp. 2517-2529
S&M1695 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2018.2053
Published: November 20, 2018

Automated Segmentation of Dental Calculus in Optical Coherence Tomography Images [PDF]

Chia-Yen Lee, Ching-Cheng Chuang, Guan-Jie Chen, Chih-Chia Huang, Shyh-Yuan Lee, and Yu-Hsien Lin

(Received March 28, 2018; Accepted August 31, 2018)

Keywords: optical coherence tomography (OCT), image analysis, segmentation, dental calculus

The presence of dental calculus is highly correlated with the formation and advancement of periodontal disease. The occurrence and relapse of periodontal disease can be prevented only if dental calculus is completely removed. In this study, optical coherence tomography (OCT) is used to obtain two-dimensional cross-sectional images of tooth samples, in conjunction with a segmentation technique that enables automatic identification of dental calculus. We propose the vertical intensity transform function to correct the nonuniform instrument signal intensity caused by OCT. Afterwards, the detection ranges are defined by K-means or the Markov random field (MRF), and the candidate range is selected on the basis of mathematical morphology (MM). Finally, the features (thickness gradient, texture, and tooth surface slope) are quantified, and dental calculus is recognized and segmented. In the preliminary result, the sensitivity is 87.5%. The mean distance between the boundaries generated by the proposed algorithm and the corresponding manually delineated boundaries is 2.52 ± 3.54 pixels. Our proposed algorithm assists physicians to determine dental calculus more easily. Doctors no longer need to rely solely on their experiences to recognize dental calculus, but can refer to specific data to assist in diagnosis.

Corresponding author: Chia-Yen Lee


Cite this article
Chia-Yen Lee, Ching-Cheng Chuang, Guan-Jie Chen, Chih-Chia Huang, Shyh-Yuan Lee, and Yu-Hsien Lin, Automated Segmentation of Dental Calculus in Optical Coherence Tomography Images, Sens. Mater., Vol. 30, No. 11, 2018, p. 2517-2529.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.