Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 34, Number 12(5) (2022)
Copyright(C) MYU K.K.
pp. 4813-4825
S&M3145 Research Paper of Special Issue
https://doi.org/10.18494/SAM3966
Published in advance: September 20, 2022
Published: December 28, 2022

Development of System for Collecting User-specified Training Data for Autonomous Driving Based on Virtual Road Environment [PDF]

Min-Soo Kim and In-Sung Jang

(Received April 30, 2022; Accepted July 5, 2022)

Keywords: autonomous driving, high definition road, virtual environment, training data, deep learning

Deep learning technologies that use road images to recognize autonomous driving environments have been actively developed. Such deep-learning-based autonomous driving technologies need a large amount of training data that can represent various road, traffic, and weather environments. However, there have been many difficulties in terms of time and cost in collecting training data that can represent various road environments. Therefore, in this study, we attempt to build a virtual road environment and develop a system for collecting training data based on the virtual environment. To build a virtual environment identical to the real world, we convert and use two kinds of existing geospatial data: high-definition 3D buildings and high-definition roads. We also develop a system for collecting training data running in the virtual environment. The implementation results of the proposed system show that it is possible to build a virtual environment identical to the real world and to collect specific training data quickly and at any time from the virtual environment with various user-specified settings.

Corresponding author: Min-Soo Kim


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Min-Soo Kim and In-Sung Jang, Development of System for Collecting User-specified Training Data for Autonomous Driving Based on Virtual Road Environment, Sens. Mater., Vol. 34, No. 12, 2022, p. 4813-4825.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.