pp. 4813-4825
S&M3145 Research Paper of Special Issue https://doi.org/10.18494/SAM3966 Published in advance: September 20, 2022 Published: December 28, 2022 Development of System for Collecting User-specified Training Data for Autonomous Driving Based on Virtual Road Environment [PDF] Min-Soo Kim and In-Sung Jang (Received April 30, 2022; Accepted July 5, 2022) Keywords: autonomous driving, high definition road, virtual environment, training data, deep learning
Deep learning technologies that use road images to recognize autonomous driving environments have been actively developed. Such deep-learning-based autonomous driving technologies need a large amount of training data that can represent various road, traffic, and weather environments. However, there have been many difficulties in terms of time and cost in collecting training data that can represent various road environments. Therefore, in this study, we attempt to build a virtual road environment and develop a system for collecting training data based on the virtual environment. To build a virtual environment identical to the real world, we convert and use two kinds of existing geospatial data: high-definition 3D buildings and high-definition roads. We also develop a system for collecting training data running in the virtual environment. The implementation results of the proposed system show that it is possible to build a virtual environment identical to the real world and to collect specific training data quickly and at any time from the virtual environment with various user-specified settings.
Corresponding author: Min-Soo KimThis work is licensed under a Creative Commons Attribution 4.0 International License. Cite this article Min-Soo Kim and In-Sung Jang, Development of System for Collecting User-specified Training Data for Autonomous Driving Based on Virtual Road Environment, Sens. Mater., Vol. 34, No. 12, 2022, p. 4813-4825. |