Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 24, Number 2 (2012)
Copyright(C) MYU K.K.
pp. 99-111
S&M872 Research Paper
https://doi.org/10.18494/SAM.2012.741
Published: February 16, 2012

Residual Stress of Hoop-Wound CFRP Composites Manufactured with Simultaneous Heating [PDF]

Daisuke Tabuchi, Takao Sajima, Toshiro Doi, Hiromichi Onikura, Osamu Ohnishi, Syuhei Kurokawa and Takahiro Miura

(Received December 20, 2010; Accepted March 7, 2011)

Keywords: composite material, filament winding, residual stress, simultaneous heating, finite element method (FEM)

Carbon-fiber-reinforced plastic (CFRP) is used to strengthen high-pressure hydrogen composite vessels. However, the existence of excessive resin between CFRP layers and a drop in the strength of CFRP resulting from the fiber tension during the layer stacking of CFRP composites are the points at issue. To solve them, a curing method using simultaneous heating has been proposed. The purpose of this paper is to evaluate the influence of the simultaneous heating on the residual stress of the CFRP composite. CFRP test specimens were manufactured with simultaneous heating, and strains from their stress releases were measured. As a result, with the simultaneous heating method, the difference in residual stresses between the CFRP inner and outer surfaces is smaller than that with the conventional filament winding (FW) method. We conclude that the simultaneous heating method has an advantage to increase the pressure capacity of composite pressure vessels.

Corresponding author: Daisuke Tabuchi


Cite this article
Daisuke Tabuchi, Takao Sajima, Toshiro Doi, Hiromichi Onikura, Osamu Ohnishi, Syuhei Kurokawa and Takahiro Miura, Residual Stress of Hoop-Wound CFRP Composites Manufactured with Simultaneous Heating, Sens. Mater., Vol. 24, No. 2, 2012, p. 99-111.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.