Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 34, Number 12(5) (2022)
Copyright(C) MYU K.K.
pp. 4879-4890
S&M3149 Research Paper of Special Issue
https://doi.org/10.18494/SAM4194
Published: December 28, 2022

Grid-based Urban Fire Prediction Using Extreme Gradient Boosting (XGBoost) [PDF]

Haeng Yeol Oh and Meong-Hun Jeong

(Received October 24, 2022; Accepted December 12, 2022)

Keywords: urban fire risk, grid-based prediction, machine learning, XGBoost

Fires in urban areas lead to enormous financial and human losses because cities have high densities of people and buildings. Although a recent advanced IoT technology improves early fire detection, it is crucial to predict fire risk to manage and prevent urban fires. We propose a method of predicting urban fires using extreme gradient boosting (XGBoost), which is based on grid-based data, to consider the characteristics of urban fires occurring in local areas. Before model training, we conducted a correlation analysis and variance inflation factor (VIF) analysis to remove variables with a strong correlation between independent variables. Furthermore, oversampling and feature selection techniques were applied to improve the model’s performance. Experimental results revealed that the overall accuracy of XGBoost was 81.25%, the F1-score was 86.43%, and the area under the curve (AUC) was 84.59%. XGBoost performed better than baseline models, such as the support vector machine (SVM) and logistic regression. The results of this study show that it can be used for local area management and the prevention of urban fires.

Corresponding author: Meong-Hun Jeong


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Haeng Yeol Oh and Meong-Hun Jeong, Grid-based Urban Fire Prediction Using Extreme Gradient Boosting (XGBoost), Sens. Mater., Vol. 34, No. 12, 2022, p. 4879-4890.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.