Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 36, Number 10(2) (2024)
Copyright(C) MYU K.K.
pp. 4329-4341
S&M3803 Research Paper of Special Issue
https://doi.org/10.18494/SAM5206
Published: October 28, 2024

Automatic Merging Method for Sectional Map Based on Deep Learning [PDF]

Shifan Liu, Chen Xing, Chengwei Dong, Yunhan Li, and Peirun Cao

(Received June 27, 2024; Accepted October 11, 2024)

Keywords: deep learning, computer vision, sectional map, image registration, base map production

Owing to time and scene constraints, a significant number of sectional maps exist in paper form. These maps contain a vast amount of data and hold high information value. However, they often suffer from issues such as annotations, stains, deformation, and missing content during preservation. Traditional processing methods require a large amount of manual image registration, which is extremely inconvenient. In this study, a map image labeling program is designed using OpenCV to prepare a map image dataset, and the U2Net-p algorithm for map segmentation is trained on this dataset. Furthermore, a comprehensive method for automatically merging sectional maps is designed and implemented, which can repair and process sectional maps and seamlessly integrate them into target grids according to map sheet numbering rules. This method has been applied to the production of base maps for natural resource demarcation projects, achieving a stitching accuracy of 96.67% on marked anchor points and considerably improving processing speed. This indicates that our approach has broad application value in the field of automatic stitching and fusion of sectional map images.

Corresponding author: Chengwei Dong


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Shifan Liu, Chen Xing, Chengwei Dong, Yunhan Li, and Peirun Cao, Automatic Merging Method for Sectional Map Based on Deep Learning, Sens. Mater., Vol. 36, No. 10, 2024, p. 4329-4341.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.