Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 33, Number 1(1) (2021)
Copyright(C) MYU K.K.
pp. 89-107
S&M2439 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2021.2977
Published in advance: November 24, 2020
Published: January 15, 2021

Motion State Recognition Focusing on a Person’s Angle of Thigh for Supporting Evacuation Route Estimation in Disaster Relief [PDF]

Hiroaki Morino and Chisaki Takahashi

(Received July 14, 2020; Accepted September 28, 2020)

Keywords: motion state recognition, pedestrian dead reckoning, smartphone sensing, rotation vector sensor

When evacuating a building after a disaster such as an earthquake, it would be useful to detect the trajectory of an evacuation path by pedestrian dead reckoning (PDR) and record it in a person’s smartphone; this could help rescue staff to trace back to where an injured person remains in the building. Considering this application, we present a novel scheme to recognize motion states of a person, including walking, descending stairs, and ascending stairs, using the person’s smartphone, focusing on the angle of the thigh detected by a rotation vector sensor and acceleration values. The proposed scheme mainly solves the existing problem of height estimation using barometers, in which sensors have a time lag of their output, giving inaccurate estimation. Also, the main benefit of the proposed scheme compared with related works is that it requires only these sensor values obtained when the person is walking or running on one floor of a building as reference values, which are used to recognize other motion states, where the scheme requires training data of only a part of the target motion states for recognition. A performance evaluation with ten experimental participants shows that the proposed scheme achieves a recall rate of each motion state of over 80% and an F-value of around 0.8.

Corresponding author: Hiroaki Morino


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Hiroaki Morino and Chisaki Takahashi, Motion State Recognition Focusing on a Person’s Angle of Thigh for Supporting Evacuation Route Estimation in Disaster Relief, Sens. Mater., Vol. 33, No. 1, 2021, p. 89-107.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Sensing Technologies for Green Energy
Guest editor, Yong Zhu (Griffith University)
Call for paper


Special Issue on Room-temperature-operation Solid-state Radiation Detectors
Guest editor, Toru Aoki (Shizuoka University)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.